Recent Technical
Reports
(back)
- Emilia Magnani, Ernesto De Vito, Philipp Hennig, Lorenzo Rosasco
Learning convolution operators on compact abelian groups
[pdf]
Technical Report arXiv:2501.05279
- Giovanni S. Alberti, Ernesto De Vito, Tapio Helin, Matti Lassas, Luca Ratti, Matteo Santacesaria
Learning sparsity-promoting regularizers for linear inverse problems
[pdf]
Technical Report arXiv:2412.16031
- Antoine Chatalic, Nicolas Schreuder, Ernesto De Vito, and
Lorenzo Rosasco
Efficient Numerical Integration in Reproducing Kernel Hilbert Spaces
via Leverage Scores Sampling
[pdf]
Technical Report arXiv:2311.13548
- Nicolò Pagliana, Alessandro Rudi, Ernesto De Vito, Lorenzo Rosasco
Interpolation and Learning with Scale Dependent Kernels
[pdf]
Technical Report arXiv:2006.09984
- Andrea Della Vecchia, Ernesto De vito, Jaouad Mourtada, and Lorenzo Rosasco
The Nyström method for convex loss functions
[pdf]
Journal Machine Learing Research 25 (360) 1-60 (2024)
- Jonathan C. Rodriguez, Ernesto De Vito, Cesare Molinari,
Lorenzo Rosasco, Silvia Villa
On Learning The Optimal Regularization Parameter In Inverse Problems
[pdf]
Inverse Problems 40, (2024) DOI 10.1088/1361-6420/ad8a84
Technical Report arXiv:2311.15845
- Francesca Bartolucci, Ernesto De Vito, Lorenzo Rosasco, Stefano Vigogna
Understanding neural networks
with reproducing kernel Banach spaces
[pdf]
ACHA 62 194-236 (2023)
Technical Report arXiv:2109.09710
- S. Dahlke, F. De Mari, E. De Vito, M. Hansen, M. Hasannasab, M. Quellmalz, G. Steidl, G. Teschke
Continuous Wavelet Frames on the Sphere: The Group-Theoretic
Approach Revisited [pdf]
ACHA 56 123-147 (2022)
DOI: https://doi.org/10.1016/j.acha.2021.08.003
Technical Report arXiv:2012.13460
- Zeljko Kereta, Stefano Vigogna, Valeriya Naumova, Lorenzo
Rosasco, Ernesto De Vito
Construction and Monte Carlo estimation of
wavelet frames generated by a reproducing kernel
[pdf]
Journal of Fourier Analysis and Applications 27 (2021)
DOI: https://doi.org/10.1007/s00041-021-09835-0
Technical Report arXiv:2006.09870
- Ernesto De Vito, Nicole Mücke, Lorenzo Rosasco
Reproducing kernel Hilbert spaces on manifolds: Sobolev and
Diffusion spaces
[pdf]
Analysis and Applications (2021) available online
DOI: http://dx.doi.org/10.1142/S0219530520500220
- De Vito, E., Fornasier, M. and Naumova Valeriya
A Machine Learning Approach to Optimal Tikhonov Regularization
I: Affine Manifolds
[pdf]
Analysis and Applications, 20 (02) 353-400 (2022)
DOI: http://dx.doi.org/10.1142/S0219530520500220
- Enrico Cecini, Ernesto De Vito, Lorenzo Rosasco
Multi-Scale Vector Quantization with Reconstruction Trees
[pdf]
Information and Inference: A Journal of the IMA (2020) available online
DOI http://dx.doi.org/10.1093/imaiai/iaa004
- Giovanni S. Alberti, Francesca Bartolucci, Filippo De Mari,
Ernesto De Vito
Unitarization and Inversion Formulae for the Radon Transform
between Dual Pairs
[pdf]
SIAM Journal on Mathematical Analysis 51 (6) 4356-4381 (2019)
DOI: http://dx.doi.org/10.1137/18M1225628
- S. Dahlke, F. De Mari, E. De Vito, L. Sawatzki, G. Steidl, G. Teschke, F. Voigtlaender
On the atomic decomposition of coorbit spaces with non-integrable kernel
[pdf]
in Applied and Numerical Harmonic Analysis (2019)
pp. 75-144
- D. Malafronte, E. De Vito, F. Odone
Local Spatio-Temporal Representation Using the 3D Shearlet
Transform
Sampling Theory in Signal and Image Processing 17(1), 57-72 (2018)
- F. Bartolucci, F. De Mari, E. De Vito, F. Odone
Shearlets as Multi-scale Radon Transforms
Sampling Theory in Signal and Image Processing 17(1), 1-15 (2018)
- D. Malafronte, E. De Vito, F. Odone
Space-Time Signal Analysis and the 3D Shearlet Transform
[pdf]
Journal of Mathematical Imaging and Vision 60(7), pp. 1008-1024 (2018)
DOI --
http://dx.doi.org//10.1007/s10851-018-0791-3
- F. Bartolucci, F. De Mari, E. De Vito, F. Odone
Radon transform intertwines shearlets and wavelets
[pdf]
Applied and Computational Harmonic Analysis (2018)
DOI --
https://doi.org/10.1016/j.acha.2017.12.005
- A. Rudi, E. De Vito, A. Verri, F. Odone
Regularized Kernel Algorithms for Support Estimation
[pdf]
Front. Appl. Math. Stat., 08 November (2017)
DOI --
https://doi.org/10.3389/fams.2017.00023
- Duval-Poo, M., Noceti, N., Odone, F., and De Vito, E.
Scale Invariant Interest Points with Shearlets
[pdf]
IEEE Transactions on Image Processing 26 (6) 2835-2867 (2017)
DOI --
http://dx.doi.org//10.1109/TIP.2017.2687122
- Alberti, G.S., Dahlke, S. De Mari, F., De Vito, E. and
Vigogna, S.
Continuous and discrete frames generated by the evolution flow
of the Schrödinger equation
[pdf]
Analysis and Applications 15 (6) 915-937 (2017)
DOI:
http://dx.doi.org/10.1142/S021953051750004X
- Dahlke, S., De Mari, F., De Vito, E., Labate, D., Steidl, G.,
Teschke, G., Vigogna, S.
Coorbit spaces with voice in a Frechet space
[pdf]
Journal of Fourier Analysis 23 (1) 141-206 (2017)
DOI:
http://dx.doi.org/10.1142/10.1007/s00041-016-9466-x
- De Mari, F., De Vito, E., Vigogna, S.
Geometric classification of semidirect products in the maximal
parabolic subgroup of Sp(2,R) [pdf]
Analysis and Application 15 (2) 241--259 (2017)
DOI:
http://dx.doi.org/10.1142/10.1142/S0219530515500256
- Dahlke, S., De Mari, F., De Vito, E., Hauser, S. Steidl, G.,
Teschke, G.
Different faces of the shearlet group
[pdf]
J. Geom. Anal. 26, 1693--1729 (2016)
DOI:
http://dx.doi.org/10.1007/s12220-015-9605-7
- Duval Poo M., Odone, F., De Vito, E.,
Edges and corners with Shearlets [pdf]
IEEE Trans. on Image Processing, 24 3768-3780 (2015)
DOI:
http://dx.doi.org/10.1109/TIP.2015.2451175
DOI
- De Vito, E., Rosasco L., Toigo A.
Learning sets with separating kernels [pdf]
Applied and Computational Harmonic Analysis, 37 185--217 (2014)
- Alberti G., De Mari, F., De Vito, E., L. Mantovani
Reproducing subgroups of Sp(2,R). Part II: admissible vectors [pdf]
Monatshefte für Mathematik 173 261--307 (2014)
- Rudi A., De Vito, E., Odone, F.
Geometrical and computational aspects of Spectral Support Estimation for novelty detection [pdf]
Pattern Recognition Letters 36 107--116 (2014)
- Alberti G., L. Balletti, De Mari, F., De Vito, E.
Reproducing subgroups of Sp(2,R). Part I: Algebraic Classification [pdf]
Journal of Fourier Analysis and its Applications 19 651--682 (2013)
on
line
- De Vito, E., Villa, S., Umanità V.
An extension of Mercer theorem to vector-valued
measurable kernels[ pdf]
Applied Computational Harmonic Analysis, 34 339--351 (2013).
- De Mari, F., De Vito, E.
A mock metaplectic representation [pdf]
Applied Computational Harmonic Analysis 34 163--200 (2013).
- De Vito, E., Villa, S., Umanità V.
A consistent algorithm to solve Lasso, elastic-net and
Tikhonov regularization[pdf]
Journal of Complexity 27 188–200 (2011).
- De Vito, E., Pereverzev S., Rosasco L.
Adaptive Kernel Methods via the Balancing Principle [pdf]
Foundation of Computational Mathematics 8 355-479 (2010).
- Rosasco, L., Belkin, M., and De Vito, E.
On Learning with Integral Operators [pdf]
Journal Machines Learning Reaserch 11 905-934 (2010).
- Carmeli C., De Vito E., Toigo A., Umanità
Vector valued reproducing kernel Hilbert spaces and universality [pdf]
Analysis and Applicatiopns 8 19-61 (2010).
- Albini P., De Vito E., Toigo A.
Quantum Homodyne Tomography as an Informationally Complete Positive
Operator Valued Measure [pdf]
J. Phys. A: Math. Theor. 42 (2009) 29530.
- De Mol C., De Vito E., Rosasco L.
Elastic Net Regularization in Learning Theory. [pdf]
Journal of Complexity 25 201-230 (2009.
- A. Caponnetto, De Vito E., M. Pontil
Entropy Conditions for $L_r$-Convergence of Empirical Processes.
[pdf]
Advances in Computational Mathematics 30 355--373 (2009).
- Lo Gerfo L., Rosasco L., Odone F., De Vito E., Verri A.
Spectral Algorithms for
Supervised Learning. [pdf]
Neural Computation, 7 1873-1897 (2008)
- Caponnetto A., De Vito E.
Optimal Rates for Regularized Least-Squares Algorithm. [pdf]
Foundations of Computational Mathematics, 7 331-368 (2007).
- C. Carmeli, E. De Vito, A. Toigo
Vector Valued Reproducing Kernel Hilbert Spaces Integrable,
Functions and
Mercer Theorem. [pdf]
Analysis and Applications, 4 377-408 (2006).
- De Vito E., Caponnetto A., Rosasco L.
Discretization Error Analysis for Tikhonov Regularization in
Learning Theory. [pdf]
Analysis and Applications, 4 81-99 (2006).
- De Vito E., Rosasco L., Caponnetto A., De Giovannini U., Odone
F.
Learning from Examples as an Inverse Problem. [pdf]
Journal of Machine Learning Research, 6 883-904 (2005).
- De Vito E., Caponnetto A., Rosasco L.
Model Selection for Regularized Least-Squares Algorithm in
Learning Theory. [pdf]
Foundations of Computational Mathematics, 5 59-85 (2005).
- De Vito E., Rosasco L., Caponnetto A., Piana M., Verri A.
Some Properties of Regularized Kernel Methods. [pdf]
Journal of Machine Learning Research, 5 1363-1390 (2004).
- Rosasco L., De Vito E., Caponnetto A., Piana M., Verri A.
Are Loss Functions All the Same? [pdf]
Neural Computation, 16 1063-1076 (2004).
- C. Carmeli, G.Cassinelli, E. De Vito, A. Toigo, B. Vacchini
A complete characterization of phase space measurements. [pdf]
J.Phys. A, 37 5057-5066 (2004).
- G.Cassinelli, E. De Vito, A. Toigo
Positive operator valued measures covariant with respect to an
Abelian group. [pdf]
J.Math. Phys., 45 418-433 (2004).
- G.Cassinelli, E. De Vito, A. Toigo
Positive operator valued measures covariant with respect to an
irreducible representation. [pdf]
J. Math. Phys., 44 4768-4775 (2003).
- G.Cassinelli, E.De Vito
Square-integrability modulo a subgroup. [ps]
Trans. A.M.S., 355 1443-1465 (2003).
- G.Cassinelli, E.De Vito, P.Lahti, J.-P. Pellonpää
Covariant localizations in the torus and the phase observables.
[ps]
J. Math. Phys., 43 693-704 (2002).
- P.Aniello, G.Cassinelli, E.De Vito, A.Levrero
On discrete frames associated with semidirect products. [ps]
J.Fourier Analys and Appl., 7 199-206 (2001).
- G. M. D'Ariano, E. De Vito, L. Maccone
SU(1,1) tomography. [ps]
Phys. Rev. A, 64 033805 (2001).
- P. Busch, G.Cassinelli, E.De Vito, P.Lahti, A.Levrero
Teleportation and Measurement. [ps]
Physics Letter A, 284 141-145 (2001).
- G.Cassinelli, E.De Vito, P.Lahti, A.Levrero
Phase Space Observables and Isotypic Spaces. [ps]
J.Math.Phys., 41 5883-5896 (2000).
- G.Cassinelli, E.De Vito, A.Levrero
Square-integrable imprimitivity systems. [ps]
J.Math.Phys., 41 4833-4859 (2000).
- G.Cassinelli, G.M. D'Ariano, E.De Vito, A.Levrero
Group theoretical Quantum Tomography. [ps]
J.Math.Phys 41 7940-7951 (2000).
- G.Cassinelli, E.De Vito, P.Lahti, A.Levrero
A theorem of Ludwig revisited. [ps]
Found.Phys., 1755-1761 30 (2000).
- P.Aniello, G.Cassinelli, E.De Vito, A.Levrero
Frames associetad with imprimitivity systems. [ps]
J. Math. Phys., 40 5184-5202 (1999).
- P.Aniello, G.Cassinelli, E.De Vito, A.Levrero
Wavelet transforms and discrete frames associated to semidirect
products. [ps]
J. Math. Phys., 39 3965-3973 (1998).
- P.Aniello, G.Cassinelli, E.De Vito, A.Levrero
Square integrability of induced representations of semidirect
products with normal abelian subgroup. [ps]
Rev. Math. Phys., 10 301-313 (1998).
- G.Cassinelli, E.De Vito, A.Levrero
Galilei invariant wave equations. [ps]
Rep.Math.Phys., 43 467-498 (1999).
- G.Cassinelli, E.De Vito, P.Lahti, A.Levrero
Symmetry of the Quantum State Space and Group Representations.
[ps]
Rev. Math. Phys., 10 893-924 (1998).
- G.Cassinelli, E.De Vito, P.Lahti, A.Levrero
Symmetry Groups in Quantum Mechanics and the Theorem of Wigner
on the Symmetry Transformations. [ps]
Rev. Math. Phys., 9 921-941 (1997).
- G.Cassinelli, E.De Vito, A.Levrero
Integrability of the Quantum Adiabatic Evolution and Geometric
Phases. [ps]
J. Math. Phys., 38 6101-6118 (1997).
- G.Cassinelli, E.De Vito, A.Levrero
On the decomposition of a quantum state. [ps]
J. Math. Analysis and Appl., 210 472-483 (1997).
- De Vito, E., Truini, P.
Deformation of polynomial spaces over semisimple Lie groups.
Comm. Theoret. Phys. (Allahabad) 3 1–34 (1994)
- Cassinelli, G. ; De Vito, E. ; Lahti, P.
Properties of the range of a state operator
Rep. Math. Phys. 34 211–224 (1994)
- E.De Vito, A.Levrero
Pancharatnam Phase for Polarized
Light
J.Mod. Opt., 41 2233 (1994).
- G.Cassinelli, E.De Vito, P.Lahti, A.Levrero
Geometric Phase and Sequential
Measurements in Quantum Mechanics
Phys. Rev. A 49, 3229-3233 (1994).
- Stefano Vigogna, Giacomo Meanti, Ernesto De Vito, Lorenzo Rosasco
Multiclass learning with margin: exponential rates with no bias-variance trade-off
[pdf]
ICML2022
- Giacomo Meanti, Luigi Carratino, Ernesto De Vito, Lorenzo Rosasco
Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression
[pdf]
AISTATS 2022
- Antoine Chatalic, Luigi Carratino, Ernesto De Vito, Lorenzo Rosasco
Mean Nyström Embeddings for Adaptive Compressive Learning
[pdf]
AISTATS 2022
-
Giovanni S. Alberti, Ernesto De Vito, Matti Lassas, Luca Ratti,
Matteo Santacesaria
Learning the optimal Tikhonov regularizer for inverse problems
[pdf]
NIPS2021
- Andrea Della Vecchia, Jaouad Mourtada, Ernesto De Vito,
Lorenzo Rosasco
Regularized ERM on random subspaces
[pdf]
AISTATS 2021
- Zeljko Kereta, Stefano Vigogna, Valeriya Naumova, Lorenzo
Rosasco, Ernesto De Vito
Monte Carlo wavelets: A randomized approach to frame discretization
[pdf]
13th International Conference on Sampling Theory and Applications, SampTA 2019
DOI: http://dx.doi.org/10.1109/SampTA45681.2019.9030825
- Duval-Poo M. , Noceti N., Odone F., De Vito E.
Detection and description of scale invariant interest points
with shearlets [pdf]
Conference proceedings: SampTA 2017 Page(s):294 - 298 -- DOI:
10.1109/SAMPTA.2017.8024340
-
Bartolucci F., De Mari F., De Vito E., Odone F.,
Shearlets as multi-scale Radon transform [pdf]
Conference proceedings: SampTA 2017 Page(s): 625 - 629 -- DOI:
10.1109/SAMPTA.2017.8024400
- Malafronte D. , Odone F., De Vito E.
Local spatio-temporal representation using the 3D shearlet
transform
[pdf]
Conference proceedings: SampTA 2017 Page(s): 585-589 -- DOI:
10.1109/SAMPTA.2017.8024409
- Duval-Poo M. , Levet F. De Vito E., Odone F.
Retinal Image Analysis with Shearlets [pdf]
Conference proceedings: STAG: Smart Tools and Apps in computer Graphics (2016)
- Duval-Poo M. , Odone F., De Vito E.
Enhancing signal discontinuities with Shearlets: an application
to corner detection [pdf]
Conference proceedings: ICIAP 2015
- De Vito, E., Rosasco L., Toigo A.
Spectral Regularization for Support Estimation [pdf]
Conference proceedings: Annual Conference on
Neural Information Processing Systems, 2010.
- De Mari, F, De Vito E.
An introduction to mocklets
Oberwolfach Mini-Workshop: Shearlets, Organised by Gitta Kutyniok,
Demetrio Labate, October 3rd – October 9th, 2010 [pdf]
- De Mol C., De Vito E., Rosasco L.
Sparsity in Learning Theory
Oberwolfach Mini-Workshop: Wavelet and Multiscale Methods, Organised by
A. Cohen, W. Dahmen, R. DeVore, August 1st – August 7th, 2010 [pdf]
- Rosasco, L., Belkin, M., and De Vito, E.
A Note on Perturbation Results for Learning Empirical Operators [pdf]
COLT 2009-- 22nd Annual Conference on Learning Theory (2009).
- De Mol C., De Vito E., Rosasco L.
Analysis of Elastic-Net
Regularization
Oberwolfach Mini-Workshop: Learning Theory and Approximation, Organised
by K. Jetter, S. Smale, D. Zhou, June 29th – July
5th, 2008 [pdf]
- Rosasco L., Caponnetto A., De Vito E., De Giovannini U., Odone F.
Learning, Regularization and Ill-Posed Inverse Problems. [pdf]
Conference proceedings: Eighteenth Annual Conference on Neural
Information Processing Systems, 2004.
- G. Cassinelli, E. De Vito, P. Truini
Classical pairing and quantum
group duality.
Quantum symmetries (Clausthal, 1991), 373–379, World Sci. Publ., River
Edge, NJ, 1993.
Chapters in Books
(back)
- Bartolucci,F., De Mari, Filippo, De Vito, E.
Cone-Adapted Shearlets and Radon Transforms
in ``Advances in Microlocal and Time-Frequency Analysis'',
Boggiatto, Cappiello, Cordero, Coriasco, Garello, Oliaro, Seiler
(eds.), Applied and
Numerical Harmonic Analysis (2020), DOI
10.1007/978-3-030-36138-9
- Alberti, G.S., Dahlke, S. De Mari, F., De Vito, E. and Fuhr,
H.
Recent Progress in Shearlet Theory: Systematic Construction of Shearlet Dilation Groups, Characterization of Wavefront Sets, and New Embeddings
[pdf]
in ``Frames and Other Bases in Abstract and
Function Spaces'', I. Pesenson et al. (eds.), Applied and
Numerical Harmonic Analysis (2017), DOI
10.1007/978-3-319-55550-8_7
- De Mari, F., De Vito, E.
The Use of Representations in Applied Harmonic Analysis
in ``Harmonic and Applied Analysis. From Groups to Signals'', Dahlke,
S., De Mari, F., Grohs, P., Labate, D. (Eds.),
Birkhasuer (2015) DOI 10.1007/978-3-319-18863-8
[ link
to Springer online catalogueonline catalogue]
- Rudi, A, Canas, G., De Vito, E., Rosasco, R.
Learning Sets and Subspaces [pdf]
in "Regularization, Optimization,
Kernel and Support Vector Machines", Ed. Suykens, J., Signoretto, M.,
Argyriou, A., Chapman & Hall/CRC, 2014
- G. Cassinelli, E. De Vito, A. Levrero, P. J. Lahti
The Theory of Symmetry Actions in Quantum Mechanics with an application
to the Galilei group.
Series: Lecture Notes in Physics, Vol. 654 2004, XII, 112 p.
[link
to
Springer online catalogue]
- Rosasco L., De Vito E. and Verri A.
Spectral Methods for Regularization in Learning Theory. [pdf]
Technical report DISI-TR-05-18.
- Caponnetto A., Rosasco L., De Vito E., Verri A.
Empirical Effective Dimension and Optimal Rates for Regularized
Least-Squares Algorithm. [pdf]
CBCL Paper #252/AI Memo #2005-019, Massachusetts Institute of
Technology, Cambridge, MA, May 2005.
Home.