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Abstract

We characterize all the phase space measurements for a non-relativistic
spin-less particle.

1 Introduction

In the usual framework of Quantum Mechanics, the states (density matrices)
of a physical system are described by positive trace class trace one operators
acting on a Hilbert space H, and the physical quantities (observables) are
associated with self-adjoint operators on H in such a way that tr(SA) is the
expectation value of the observable A when the system is in the state S (here
tr denotes the trace).

Nevertheless, a careful analysis of measurement processes shows that one
has to generalize suitably the concept of observable for both theoretical and
experimental reasons [1, 2, 3, 4]. These generalized observables are described
as mathematical objects by positive operator valued measures (POVM). In
this framework one can describe measurements of quantities like angle of
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rotation, phase and arrival times, as well as joint measurements of quanti-
ties like position and momentum, incompatible according to the standard
textbook formulation of Quantum Mechanics.

In order to give a physical meaning to the observables one invokes some
properties of covariance with respect to a symmetry group. The requirement
of covariance is a strong constraint: it allows to select the measurements
of physical interest among the larger class of all the possible generalized
observables. As recently proved, from this principle it follows not only the
characterization of generalized observables, but also the determination of
generators of quantum dynamical semigroups [5, 6, 7].

In this paper, we classify all the possible joint observables of position
and momentum that arise from the request of covariance with respect to the
Galilei group. In literature these observables are usually called phase space
measurements for a non-relativistic particle.

The quest for the characterization of phase space measurements in Quan-
tum Mechanics goes back to the 70’s, and in particular to the seminal works
of Ali and Prugovečki [8] and Holevo [9, 2], the first concerned with the rep-
resentation of Quantum Mechanics on fuzzy phase space, the second with
a general treatment of quantum measurements covariant with respect to a
given symmetry group. The result presented in this paper, which relies on a
previous work on the characterization of POVM covariant with respect to an
irreducible representation of a symmetry group [10], essentially confirms the
previous ones showing, along a different line of proof, that indeed all phase
space measurements for a non-relativistic particle are expressed in terms of
an operator valued density, thus releasing the more restrictive assumptions
considered in [8] (see also [3]) and putting into evidence with respect to [9, 2]
that square-integrability of the considered representation is both a sufficient
and necessary condition.

The paper is organized in the following way. In Section 2 we briefly review
the physical motivations that justify the introduction of covariant positive
operator valued measures from the point of view of quantum measurement
theory. In Section 3 we give the complete classification of the phase space
measurements for a non-relativistic particle. The proof of the result is given
in Section 4.

2 A brief review on POVMs

For an exhaustive exposition of the theory of covariant POVMs from the per-
spective of quantum measurement theory, one can refer to [2, 3, 4]. However,
for the reader’s convenience, we briefly recall the main steps which lead quite
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naturally to the idea of covariant POVM.
First of all, we recall the mathematical definition of POVM.

Definition 1 Let X be a metric space and H a (complex separable) Hilbert
space. A map E from the Borel subsets B(X) of X into the set L(H) of
bounded operators on H such that:

1. 〈φ,E(Z)φ〉 ≥ 0 ∀ φ ∈ H, Z ∈ B(X)

2. E(X) = I

3. E(∪iZi) =
∑

i E(Zi) for all disjoint sequences of subsets (the series
converging in the weak sense).

is called a (normalized) positive operator valued measure (POVM) based on
X.

The role of POVMs in Quantum Mechanics is justified by the following
observation. Given a physical quantity described by a self-adjoint operator A,
it is well known how one obtains the probability distribution of the outcomes
of A. Indeed by the spectral theorem, A uniquely defines a projection valued
measure P , i. e. a map

P : B(R) → L(H) (1)

from the Borel subsets B(R) of R into the space of bounded operators L(H)
on H satisfying the following three conditions:

1. P (Z) is an orthogonal projection operator for all Z ∈ B(R):

P (Z) = P ∗(Z) = P (Z)2 ∀Z ∈ B(R) (2)

2. P (R) = I

3. P (∪iZi) =
∑

i P (Zi) for all disjoint sequences of subsets (the series
converging in the weak sense).

Comparing with definition 1, one easily checks that a projection valued mea-
sure is a particular case of POVM. With this notation, the physical content
of Quantum Theory is based on the following assumption: if one measures
the observable A when the system is in a state S, the probability to have an
outcome in Z is given by tr[SP (Z)].

The fact that P is a projection valued measure assures that the map

Z 7→ tr[SP (Z)] =: µA
S (Z) (3)
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is a probability distribution on R. Clearly, the physical content of the ob-
servable A is completely given by the map

S 7→ µA
S

from the set of states into the space of probability measure on R (the above
map is usually called a measurement).

The key remark is that in order that equation (3) defines a probability
measure, it is sufficient and necessary to replace equation (2) with the weaker
condition that P (Z) is a positive operator, that is

〈φ, P (Z)φ〉 ≥ 0 ∀ φ ∈ H, Z ∈ B(R). (4)

Then the corresponding map Z 7→ P (Z) will be a positive operator valued
measure on R.

Moreover, in order to take into account joint measurements, another gen-
eralization suggested by this approach consists in assuming that the space
of measurement outcomes is an arbitrary metric space X instead of R. For
example the joint measurements of position along the three axis of the Eu-
clidean space defines a projection measure on X = R3.

Given a POVM E on the space X, by the above discussion it is reasonable
to define a generalized measurement associated to E as a map from the set
of states to the space of probability measures on X

S 7→ µE
S ,

with µE
S defined according to equation (3)

Z 7→ tr[SE(Z)] = µE
S (Z).

This mathematical framework can be further enriched introducing the
concept of POVM covariant with respect to a symmetry group. From a
mathematical point of view, one has the following definition.

Definition 2 Let G be a group that acts both on H by means of a projective
unitary representation U and on the outcome space X by a geometrical (left)
action α. A POVM E on X is said to be covariant with respect to G if, for
all g ∈ G,

UgE(Z)U∗
g = E(αg(Z)) ∀Z ∈ B(X). (5)

In order to explain the physical meaning of equation (5), let us fix the
ideas on a simple example and give a natural definition of a position measure-
ment on the real line R, on which R itself acts as the group of translations.
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If x ∈ R, its action on an element y ∈ R is αx(y) = x + y. If S is a state,
denote with xS the translate of S by x. In order that a measurement E be
a position measurement, the probability distribution of the outcomes of E
performed on S and xS should satisfy the following relation:

µE
xS(Z + x) = µE

S (Z) ∀Z ∈ B(R), x ∈ R. (6)

In the more general setting in which a generic transformation group G
acts both on the quantum system and on the outcome space X the above
condition reads

µE
gS(αg(Z)) = µE

S (Z) ∀Z ∈ B(X), g ∈ G. (7)

Since the action of g ∈ G on the state S is given by

gS = UgSU∗
g

a straightforward calculation shows that equation (3) and equation (7) imply
the covariance condition (5).

In particular, if X is the (classical) phase space of the system on which
the isochronous Galilei group acts, the POVMs based on X and satisfying
equation (5) are called phase space measurements.

3 Phase space measurements

In the present section, we characterize all the phase space measurements of
a non-relativistic particle of mass m. For the sake of simplicity we restrict
to the spinless case, the extension to the general case being straightforward.

Every observer describes the phase space associated with a free particle
as X = R3 × P3. The symmetry group is the isochronous Galilei group
G = (R3 × V3)×′SO (3), where R3 is the 3-dimensional vector group of space
translations, V3 is the 3-dimensional vector group of Galileian boosts and
SO(3) is the group of rotations (connected with the identity). In particular,
the composition law of G is given by

(~a,~v,R) (~a′, ~v′, R′) = (~a + R~a′, ~v + R~v′, RR′) .

The action of an element g = (~a,~v,R) ∈ G on a point (~q, ~p) ∈ X is given by

αg (~q, ~p) = (~a + R~q,m~v + R~p) . (8)

The Hilbert space of a non-relativistic spinless particle of mass m is H =
L2 (R3, d~x) and G acts on H by means of the irreducible projective unitary
representation U given by[

U(~a,~v,R)φ
]
(~x) = eim~v·(~x−~a)φ

(
R−1 (~x− ~a)

)
. (9)
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With these notations, the problem of determining the phase space measure-
ments reduces to the characterization of the POVM on X covariant with
respect to U . The following theorem faces up this problem.

Theorem 3 Let T ∈ B(H) be a positive trace class trace one operator such
that

TU(~0,~0,R) = U(~0,~0,R)T ∀R ∈ SO(3), (10)

i. e. T is a density matrix invariant under rotations. For all Z ∈ B(X) let
ET (Z) be the operator

ET (Z) =
1

(2π)3

∫
Z

U(~a, ~p
m

,I)TU∗
(~a, ~p

m
,I)d~ad~p. (11)

where the integral is understood in the weak sense.
The map Z 7→ ET (Z) is a POVM on X covariant with respect to U .
Conversely, if E is a POVM on X covariant with respect to U , then there

exists a density matrix invariant under rotations such that E = ET .

The proof of the above theorem (which is a special case of a more general
result [10]) is given in the next section and it is based on the fact that G
acts transitively on X, i. e. given any x, y ∈ X it is always possible to find
g ∈ G such that αg(x) = y. In particular, the stability subgroup at the
origin (~0,~0), i. e. the subgroup of elements of G acting trivially on the origin,
is the compact group SO(3), so that X is isomorphic to the quotient space
G/SO(3). The essential property involved in the proof of theorem 3 is the
fact that U is square-integrable (see the definition in the next section). We
will prove that square-integrability is a necessary and sufficient condition for
the existence of covariant POVMs, when the stabilizer is compact.

Equation (11) can obviously also be written in terms of the Weyl operators
according to

ET (Z) =
1

(2π)3

∫
Z

ei(~p· ~Q−~a·~P )Te−i(~p· ~Q−~a·~P )d~ad~p,

where ~Q and ~P denote position and momentum operators acting in L2 (R3, d~x).
We now characterize the positive trace class trace one operators T satis-

fying equation (10). We have the factorization

L2
(
R3, d~x

)
= L2

(
S2, dΩ

)
⊗ L2

(
R+, r2dr

)
.

Denoting with l the representation of SO (3) acting in L2 (S2, dΩ) by left
translations, we have

U |SO(3) = l ⊗ I.
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The representation (l, L2 (S2, dΩ)) decomposes into

L2
(
S2, dΩ

)
=
⊕
`≥0

M`,

where each irreducible inequivalent subspace M` is generated by the spherical
harmonics (Y`m)−`≤m≤`. We have

L2
(
R3, d~x

)
=

(⊕
`≥0

M`

)
⊗ L2

(
R+, r2dr

)
=
⊕
`≥0

(
M` ⊗ L2

(
R+, r2dr

))
.

Let P` : L2 (S2, dΩ) −→ L2 (S2, dΩ) be the orthogonal projection onto
the subspace M`. If T intertwines l ⊗ I, one has

T (P` ⊗ I) = (P` ⊗ I) T ,

where P`⊗ I projects onto M`⊗L2 (R+, r2dr). Given Hilbert spaces H1 and
H2 and an irreducible representation (π,K), a standard result asserts that
C (π ⊗ IH1 , π ⊗ IH2) = IK ⊗ L (H1,H2). Since M` is irreducible, this implies

T (P` ⊗ I) = P` ⊗ T`

with T` ∈ L (L2 (R+, r2dr)). We then have

T =
∑

`

T (P` ⊗ I) =
∑

`

P` ⊗ T`.

In the last expression, T is a positive trace one operator if and only if each
T` is positive and

1 ≡
∑

`

dim M` tr T` =
∑

`

(2` + 1) tr T`. (12)

It follows that the operators T associated to the U -covariant POVMs M by
equation (11) are all the operators of the form

T =
∑

`

P` ⊗ T` (13)

with T` positive trace class operators satisfying equation (12).
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4 Proof of theorem 3

We prove theorem 3 in two steps. First, given an arbitrary topological group
G and a compact subgroup H, we characterize all the POVMs based on the
quotient space G/H and covariant with respect to an irreducible (ordinary)
representation of G. Then, we apply the above result to our problem lifting
the projective unitary representation U of the Galilei group to a (ordinary)
unitary representation of the central extension Gω of the Galilei group defined
by the multiplier ω of U .

From now on, let G be a unimodular locally compact second countable
topological group and H be a compact subgroup of G. We denote by

G 3 g 7−→ π(g) = ġ ∈ G/H

the canonical projection onto the quotient space G/H. Let µG and µH be
invariant measures on G and H respectively, with µH (H) = 1. Due to the
compactness of H, there exists a G-invariant measure µG/H on G/H such
that the following measure decomposition holds∫

G

f (g) dµG (g) =

∫
G/H

dµG/H (ġ)

∫
H

f (gh) dµH (h) . (14)

for all f ∈ L1 (G, µG).
Let U be an irreducible unitary representation of G acting on a Hilbert

space H. We recall that U is said to be square-integrable if there exists a
nonzero vector φ ∈ H such that∫

G

∣∣〈φ, Ugφ〉H
∣∣2 dµG (g) < +∞.

If the above condition holds, there exists a constant dU > 0, called formal
degree, such that for all φ ∈ H∫

G

∣∣〈φ, Ugφ〉H
∣∣2 dµG (g) =

1

dU

‖φ‖4 .

Finally, all the integrals of operator valued functions (as, for example, in
equation (15) below) are understood in the weak sense.

We need the following result which is proved in [10].

Proposition 4 Assume that U is square-integrable with formal degree dU

and let T be positive trace class trace one operator T ∈ B(H). The map

B(G) 3 Z̃ 7→ ẼT

(
Z̃
)

= dU

∫
Z̃

UgTU∗
g dµG (g) , (15)
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defines a POVM ẼT on G covariant with respect to U .
Conversely, if Ẽ is a POVM on G covariant with respect to U , then U is

square-integrable and there is a trace class positive operator T ∈ B(H) with

trace one such that Ẽ = ẼT .

Now we extend the above result to covariant POVMs based on G/H.

Corollary 5 Assume that U is a square-integrable representation with for-
mal degree dU and let T be a trace class positive operator T ∈ B(H) with
trace one such that

TUh = UhT ∀h ∈ H. (16)

Then the map

B(G/H) 3 Z 7→ ET (Z) = dU

∫
Z

UgTU∗
g dµG/H (ġ) , (17)

defines a POVM ET on G/H covariant with respect to U .
Conversely, if E is a POVM on G/H covariant with respect to U , then

U is square-integrable and there is a trace class positive operator T ∈ B(H)
with trace one and commuting with U |H such that E = ET .

Proof. Assume that U is square-integrable and let T ∈ B(H) as in the
statement of the corollary. By means of equation (15) T defines a POVM

ẼT based on G and covariant with respect to U . For all Z ∈ B(G/H) let

ET (Z) = ẼT (π−1(Z)).

Clearly, ET is a POVM on G/H covariant with respect to U . Moreover,
denoting with χZ the characteristic function of Z,

ET (Z) = dU

∫
G

χZ(π(g))UgTU∗
g dµG (g)

(eq. (14)) = dU

∫
G/H

dµG/H (ġ)

∫
H

χZ(π(gh))UghTU∗
ghdµH (h)

(eq. (16)) = dU

∫
G/H

dµG/H (ġ) χZ(ġ)UgTU∗
g ,

that is, equation (17) holds.
Conversely, let E be a POVM on G/H and covariant with respect to U .

For all Z̃ ∈ B(G), let lZ̃ be the function on G given by

lZ̃(g) = µH(g−1Z̃ ∩H) =

∫
H

χZ̃(gh)dµH (h) .
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Clearly, lZ̃ is a positive measurable function bounded by 1 and, since µH is
invariant, for all h ∈ H, lZ̃(gh) = lZ̃(g). It follows that there is a positive
measurable bounded function `Z̃ on G/H such that lZ̃ = `Z̃ ◦ π.

Define the operator Ẽ(Z̃) by means of

Ẽ(Z̃) =

∫
G/H

`Z̃(ġ)dE(ġ),

which is well defined since `Z̃ is bounded.

We claim that Z̃ 7→ Ẽ(Z̃) is a POVM on G covariant with respect to

U . Clearly, since `Z̃ is positive, Ẽ(Z̃) is a positive operator. Recalling that

`G = 1, one has Ẽ(G) = I. Let now (Z̃i) a disjoint sequence of B(G) and

Z̃ = ∪iZ̃i. Given g ∈ G, since (g−1Z̃i ∩ H)i is a disjoint sequence of B(H)

and g−1Z̃ ∩H = ∪i(g
−1Z̃i∩H), then `Z̃ =

∑
i `Z̃i

, where the series converges
pointwise. Let φ ∈ H, by monotone convergence theorem, one has that

〈φ, Ẽ(Z̃)φ〉 =
∑

i

〈φ, Ẽ(Z̃i)φ〉.

Finally, let g1 ∈ G, then

Ẽ(g1Z̃) =

∫
G/H

µH(g−1g1Z̃ ∩H)dE(ġ)

(ġ 7→ g1ġ) =

∫
G/H

µH(g−1Z̃ ∩H)Ug1dE(ġ)U∗
g1

= Ug1Ẽ(Z̃)U∗
g1

,

where we used the fact that E is covariant.
By means of proposition 4, U is square-integrable and there is a positive

trace class operator trace one T such that

Ẽ(Z̃) = dU

∫
Z̃

UgTU∗
g dµG (g) . (18)

We now show that T satisfies equation (16). First of all we claim that,

given h ∈ H and Z̃ ∈ B(G),

Ẽ(Z̃h) = Ẽ(Z̃). (19)

Indeed, since H is compact, µH is both left and right invariant, so that

µH(g−1Z̃h ∩H) = µH((g−1Z̃ ∩H)h) = µH(g−1Z̃ ∩H)
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and, hence, `Z̃ = `Z̃h. By definition of Ẽ(Z̃), equation (19) easily follows.
Fixed h ∈ H, by means of equation (19) and equation (18) one has that∫

Z̃

UgTU∗
g dµG (g) =

∫
Z̃h

UgTU∗
g dµG (g)

( g 7→ gh ) =

∫
Z̃

UghTU∗
ghdµG (g) ,

where we used the fact that G is unimodular. Since the equality holds for
all Z̃ ∈ B(G), then, for µG-almost all g ∈ G,

UgTU∗
g = UgUhTU∗

hU∗
g ,

where the equality holds in the weak sense. Since both sides are continuous
functions, the equality holds everywhere and equation (16) follows.

Let now Z ∈ B(G/H). Since

g−1π−1(Z) ∩H =

{
H if gH ∈ Z
∅ if gH 6∈ Z

,

then `π−1(Z) = χZ and Ẽ(π−1(Z)) = E(Z). Reasoning as in the first part of
the proof one has that E = ET .

Now we come back to the Galilei group G and to the projective unitary
representation U of G associated with a spinless particle of mass m. We
recall that projective means that for all g1, g2 ∈ G

Ug1Ug2 = ω(g1, g2)Ug1g2

where ω is the multiplier given by

ω ((~a,~v,R) , (~a′, ~v′, R′)) = eim~v·R~a′ .

We extend U to a unitary representation of the central extension Gω of G as-
sociated with the multiplier ω (see, for example, [11]). Let T = {z ∈ C : |z| = 1}
be the multiplicative group of the torus. The group Gω is the product T×G
with the composition law

(z,~a,~v, R) (z′,~a′, ~v′, R′) =
(
zz′eim~v·R~a′ , ~a + R~a′, ~v + R~v′, RR′

)
.

In particular, Gω acts transitively on X by means of

α̃(z,~a,~v,R) (~q, ~p) = (~a + R~q,m~v + R~p) . (20)
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and the stability subgroup at the origin is the compact subgroup H = T ×
SO (3). In particular, X is isomorphic to Gω/H by means of

(~q, ~p) 7→ π

(
1, ~q,

~p

m
, I

)
, (21)

where π : Gω −→ Gω/H is the canonical projection.
The irreducible projective representation U lifts to an irreducible unitary

representation Ũ of Gω as[
Ũ(z,~a,~v,R)φ

]
(~x) = z−1eim~v·(~x−~a)φ

(
R−1 (~x− ~a)

)
.

where φ ∈ L2 (R3, d~x) .
Clearly a POVM E is covariant with respect to U if and only if E is

covariant with respect to Ũ . The classification of such POVMs is given in
corollary 5. We only have to check that the representation Ũ is square-
integrable (compare with [12]). Indeed, an invariant measure of Gω is

dµGω (z,~a,~v, R) =
m

(2π)3 dzd~ad~vdR,

where dz and dR are normalized Haar measures in T and in SO (3) respec-
tively. Moreover, if φ ∈ L2 (R3, d~x), we have∫

Gω

∣∣∣〈φ, Ũ(z,~a,~v,R)φ
〉∣∣∣2 dµGω (z,~a,~v, R) =

=

∫
R3×P3×SO(3)×T

∣∣∣z 〈φ, Ũ(1,~a,~v,R)φ
〉∣∣∣2 md~ad~vdRdz

(2π)3

=

∫
R3×P3×SO(3)

∣∣∣∣∫
R3

φ (~x) e−im~v·(~x−~a)φ (R−1 (~x− ~a))d~x

∣∣∣∣2 md~ad~vdR

(2π)3

=

∫
R3×SO(3)

[∫
P3

∣∣∣F (φ (·) φ (R−1 (· − ~a))
)

(m~v)
∣∣∣2 md~v

]
d~adR

=

∫
R3×SO(3)

[∫
R3

∣∣∣φ (~x) φ (R−1 (~x− ~a))
∣∣∣2 d~x

]
d~adR = ‖φ‖4 .

Then, choosing dµGω/H (~a,~v) = m
(2π)3

d~ad~v, one has dŨ = 1, and every Ũ

-covariant POVM based on Gω/H has the form

ET (Z) =
m

(2π)3

∫
Z

Ũ(1,~a,~v,I)TŨ∗
(1,~a,~v,I)d~ad~v (22)
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for all Z ∈ B (Gω/H), where T is a positive trace one operator commuting

with Ũ
∣∣∣
T×SO(3)

. Clearly, T commutes with Ũ
∣∣∣
T×SO(3)

if and only if it com-

mutes with U |SO(3). Taking into account the identification between X and
Gω/H given by equation (21), the proof of theorem 3 is complete.

Remark 6 One can prove that the representation Ũ is square-integrable by
an abstract argument. Indeed, Gω is the semidirect product of the normal
abelian closed subgroup T×R3 and the closed subgroup V3×′SO(3). Moreover,

Ũ is the representation unitarily induced by σ from T × R3 × SO(3) to Gω,
where σ is the representation of T× R3 × SO(3) acting on C as

σ(z,~x,R) = z−1.

The corresponding orbit in the dual group T̂× R3 = Z×P3 is O = {−1}×P3.
Since O has a strictly positive measure (with respect to the Haar measure of
Z×P3) and σ|SO(3) is square-integrable, a theorem proved in [13] assures that

Ũ is square-integrable.
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