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where δ > 8, γ ≥ 4, h ∈ L1(R), and C a constant, and suppose that ψ̃ and ψ̆ satisfy
analogous conditions with the obvious change of coordinates. Further, suppose that
the shearlet system SH(φ, ψ, ψ̃, ψ̆; c, α) forms a frame for L2(R3).

Then, for any β ∈ (1, 2] and ν > 0, the frame SH(φ, ψ, ψ̃, ψ̆; c, α) provides
almost optimally sparse approximations of functions f ∈ Eα,β

3 (ν) in the sense
that:

‖f − fn‖22 = O(n−min{α/2−ε,2β/3}) as n → ∞,

where ε = ε(α) satisfies ε < 0.04 and fn is the nonlinear n-term approximation
obtained by choosing the n largest shearlet coefficients of f .

For α = 2, we even have ‖f − fn‖22 = O(n−min{α/2,2β/3} (logn)2) in Theorem 1
which is optimal (up to a log-factor). We remark that a large class of generators
ψ, ψ̃, and ψ̆ satisfy the conditions (i) and (ii) in Theorem 1. Theorem 1 is a
three-dimensional version of a result from [2]. However, as opposed to the two-
dimensional setting, anisotropic structures in three-dimensional data comprise of
two morphologically different types of structure, namely surfaces and curves. It
would therefore be desirable to allow our 3D image class to also contain cartoon-
like images with curve singularities. To achieve this we allow our discontinuity
surface ∂B to be a closed, continuous, piecewise Cα smooth surface. We denote
this function class Eα,β

3 (ν, L), where L ∈ N is the maximal number of Cα pieces.
Surprisingly, the pyramid-adapted shearlet systems still deliver the same almost
optimal rate for this extended image class Eα,β

3 (ν, L). We refer to [3] for the precise
statement of the result.
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An introduction to mocklets

Filippo De Mari

(joint work with Enesto De Vito)

The mocklets are the admissible vectors for a class of representations of suitable
semi-direct products which generalize the metaplectic representation of the sym-
plectic group as restricted to its (standard) parabolic subgroups. The setup is the
following:

i) the Hilbert space of signals is L2(Rd), regarded in the frequencies domain;
ii) the parameter space G is the semi-direct product G = Rn ! H , where

H is a locally compact second countable group with an n-dimensional
representation h '→ Mh (hence Mh is an n× n matrix);
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iii) the group H acts also on Rd by a C∞ action (h, x) '→ h.x in such a way
that there exists a positive character β of H for which

∫

Rd

ϕ(h−1.x) = β(h)

∫

Rd

ϕ(x)dx ϕ ∈ Cc(X).

Thus, for h ∈ H the Jacobian of the map x '→ h.x does not depend on x;
iv) a C∞ map Φ : Rd → Rn such that, for all x ∈ X and h ∈ H

Φ(h.x) = h[Φ(x)] = tM−1
h Φ(x).

The mock-metaplectic representation is the representation that acts on L2(Rd) as

(U(a,h)f)(x) = β(h)−
1
2 e−2πi〈Φ(x),a〉f(h−1.x).

Our results in [1] are based on the following two assumptions:

H1 the H-orbits in the dual group Rn are locally closed;
H2 for almost all y ∈ Φ(Rd) the stability subgroup of y is compact.

The first result gives a necessary condition to have a reproducing formula: the
“translations” group Rn needs to be smaller than the space where the signals are
defined.

Theorem 1. If U is a reproducing representation, then the set of critical points
of Φ has zero Lebesgue measure, hence n ≤ d.

From now on we assume the existence of an open H-invariant subset X ⊂ Rd

on which the Jacobian of Φ is strictly positive and whose complement is negligible.
As a consequence, Y = Φ(X) is an H-invariant open set of Rn and each level set
Φ−1(y) is a Riemannian submanifold (with Riemannian measure dvy). The coarea
formula gives the following disintegration formula for the d-dimensional Lebesgue
measure dx: there exists a family {νy}y∈Y of Radon measures on X such that

a) for all y ∈ Y the measure νy is concentrated on Φ−1(y);

b) for all ϕ ∈ Cc(X)

∫

X
ϕ(x)dνy(x) =

∫

Φ−1(y)
ϕ(x)

dvy(x)

(JΦ)(x)
;

c) for all ϕ ∈ Cc(X)

∫

X
ϕ(x)dx =

∫

Y

(∫

X
ϕ(x)dνy(x)

)

dy.

The next step is to label theH-orbits of Y . The natural choice of the quotient space
Y/H with the quotient topology can give rise to pathological spaces. However, H1
implies that there exist a locally compact second countable space Z with a Radon
measure dz, a Borel map π : Y → Z and a family of Radon measures {τz}z∈Z on
Y with the following properties:

a) π(y) = π(y′) if and only if y and y′ belongs to the same orbit and there
is a Borel map z '→ o(z) from Φ(Z) to Y such that π(o(z)) = z, so that
π−1(z) = H [o(z)];

b) for all z ∈ Z, τz is concentrated on π−1(z) and is a relatively invariant
measure with character | det(Mh)|−1;

c) for all ϕ ∈ Cc(Y )

∫

Y
ϕ(x)dy =

∫

Z

(∫

Y
ϕ(x)dτz(y)

)

dz.
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For all z ∈ π(Y ), we think of o(z) as the origin of the orbit π−1(z) = H [o(z)] and
we denote by Hz = Ho(z) the stability subgroup of o(z) and by νz = νo(z) the Hz-
invariant measure on the level set Φ−1(o(z)), which is Hz-invariant. Furthermore
we fix the Haar measure ds on Hz is such a way that Weil’s formula holds true

∫

H
ϕ(h)| det(Mh)|−1 dh =

∫

Y

(∫

Hz

ϕ(hy s)ds
)

dτz(u) ϕ ∈ Cc(H),

where hy ∈ H is such that hy[o(z)] = y for all y ∈ H [o(z)]. Define πz be the
quasi-regular representation of Hz acting on L2(X, νo(z)) by

(πz
sfo(z))(x) = fo(z)(s

−1.x) νy-a.e. x ∈ Φ−1(o(z)).

Assumption H2 ensures that, up the a negligible set, Hz is compact, so that πz is
completely reducible

πz +
⊕

i∈I

mi π
z,i L2(X, νo(z)) +

⊕

i∈I

miC
dz
i

where each πz,i is an irreducible representation of Hz acting on some Cdz
i and the

cardinal mi ∈ N ∪ {ℵ0} is the multiplicity of πz,i into πz. It is possible to choose
the index set I in such a way that mi is independent of z (it can happen that
dzi = 0).

We are now ready to characterize the existence of admissible vectors for the
representation U , namely for the existence of mocklets.
Theorem 2. Suppose that the set of critical points of Φ is negligible and As-
sumptions H1 and H2 hold true. If G is non-unimodular, then U is reproducing
whereas if G is unimodular, U is reproducing if and only if

∫

Z

cardΦ−1(o(z))

vol(Hz)
dz < +∞ where volHz =

∫

Hz

ds

mi ≤ dim(L2(Y, τz,C
di,z)) ∀i ∈ I , almost every z ∈ Z.

In [1] an explicit characterization of the admissible vectors is given.
An example. One of the main motivations for our construction is the connection
with the continuous shearlet transform that we now illustrate. The full shearlet
group R2!(R!R+), with scaling γ, can be realized as a subgroup of the symplectic
group Sp(2,R) as follows. Fix γ ∈ R (in the usual shearlet literature we have
γ = 1/2) and define

σt =

[

t1 t2
t2 0

]

, Ms =

[

1 0
−s 1

]

, Ma =

[

a−1/2 0
0 a1/2−γ

]

,

where t = (t1, t2) ∈ R2, s ∈ R and a ∈ R+. The matrices

g(a, s, t) =

[

MsMa 0
σtMsMa

t(MsMa)−1

]

form a subgroup G of Sp(2,R) which is isomorphic to the shearlet group. It falls
in the setup described above as follows. First of all, H = {MsMa} and n = d = 2.
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On the one hand R2 = Rd must be interpreted as frequency space (and its points
are denoted by ω), and on the other hand R2 = Rn is the dual of the representation
space of H (and its points are denoted by y). The H action on the frequency space
R2 is h.ω = MsMaω, whereas the contragredient representation is

h[y] =
[

a−1 0
−sa−1 a−γ

] [ y1

y2

]

The intertwining map is Φ(ω1, ω2) = − 1
2 (ω

2
1 , ω1ω2). It maps both half planes

XL =
{

ω ∈ R2 : ω1 < 0
}

and XR =
{

ω ∈ R2 : ω1 > 0
}

onto XL. By means of the
restriction ΦL = Φ|XL we define the map Ψ : L2(XL) → L2(XL) by

Ψf(y) = |JΦ−1
L
(y)|1/2f(Φ−1

L (y)).

The inverse Fourier transform F−1 maps L2(XL) onto a closed proper subspace
S ⊂ L2(R2) and it is easy to see that for F ∈ S we have

Sa,s,t F (ω) = F−1
(

ΨUg(a,s,t)Ψ
−1FF

)

(ω),

where

Sa,s,tF (ω) = a−3/4F
([

a−1 −sa−1

0 a−γ

]
[
ω1−t1
ω2−t2

]
)

is the continuous shearlet representation (see e.g. [2]) and where

Ug(a,s,t)f(ω) = aγ/2eiπ〈σtω,ω〉f
(
[

a1/2 0
saγ−1/2 aγ−1/2

]

ω
)

.

is the restriction of the metaplectic representation to G. All the hypotheses that
we have introduced are easily satisfied. By applying our results one obviously finds
the well-known conditions on admissible vectors, that is, on shearlets.
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Shearlet Multiresolution and Adaptive Directional Multiresolution

Tomas Sauer

(joint work with Gitta Kutyniok, Angelika Kurtz)

Like with the wavelet transform there are several ways and conceptional concepts
to develop numerical implementations of the shearlet transform. The first, maybe
more straightforward concept, is to sample the continuous transformation at a
finite set of parameters chosen such that the resulting discrete transformation
(hopefully) captures all information of the underlying transformed functions. In
both cases, the numerical computation can be accelerated by using a Fast Fourier
Transform to evaluate the underlying convolutions, cf[1]. The second approach,
on the other hand, is entirely discrete and relies on filter banks and the concept


