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DIBRIS, Università degli Studi di Genova
LCSL, Massachusetts Institute of Technology & Istituto Italiano di Tecnologia
lrosasco@mit.edu

1.1 Unsupervised Statistical Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Subspace learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Problem definition and notation . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Subspace estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Performance criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.4 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.5 Kernel PCA and embedding methods . . . . . . . . . . . . . . . . . . . 9
1.2.6 Comparison with previous results in the literature . . . . . 10

1.3 Set learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 Set Learning via Subspace Learning . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Consistency results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Sketch of the proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

We consider here the classic problem of support estimation, or learning a set
from random samples, and propose a natural but novel approach to address it.
We do this by investigating its connection with a seemingly distinct problem,
namely subspace learning.
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The problem of learning the smallest set containing the data distribution
is often called support estimation and it is a fundamental problem in statis-
tics and machine learning. As discussed in the following, its applications range
from surface estimation, to novelty detection, to name a few. In the following
we discuss how a suitable family of positive definite kernels, called separat-
ing kernels, allows to relate the problem of learning a set to the problem of
learning an appropriate linear subspace of a Hilbert space. More precisely,
we reduce the set learning problem to that of learning the smallest subspace
that contains the support of the distribution after a kernel (feature) embed-
ding. This connection between learning sets and learning subspaces allows on
the one hand to design natural spectral estimators for this problem, and on
the other hand to use analytic and probabilistic tools to derive generalization
guarantees for them.

Besides establishing this novel connection, the goal of this work is to intro-
duce novel sharp sample complexity estimates for subspace and set learning.
The theoretical results are illustrated and complemented through some nu-
merical experiments.

The Chapter is structured as follows. We begin by briefly discussing some
concepts from the statistical analysis of unsupervised learning algorithms (Sec-
tion 1.1). We then develop our analysis of the subspace learning problem, and
discuss set learning in Section 1.3. Finally, we conclude in Section 1.4 with
some numerical results.

1.1 Unsupervised Statistical Learning

The present work can be more broadly framed in the context of unsu-
pervised learning, a term typically used to describe the general problem of
extracting patterns from data [23, 19]. Here, the term pattern refers to some
geometric property of the data distribution. Specifically, in the sequel we will
be interested in recovering the following: 1) the smallest (closed) set containing
the data distribution, and 2) the smallest subspace spanned by the data dis-
tribution. As we will discuss, these two problems are indeed tightly connected.
After formally describing this connection, our focus will be in introducing a
class of spectral estimators for this problem, and deriving sharp generalization
error estimates for them.

Given a probability space (X, ρ) from which data Xn are drawn identi-
cally and independently, we let S be a set endowed with a (pseudo) metric d.
We view S as the collection of possible patterns/structures in the data distri-
bution (for instance the set of possible supports of a distribution). In many
circumstances, the true distribution ρ identifies an element Sρ in the space of
structures (for instance the true support), and the goal of an (unsupervised)
learning algorithm is to estimate an approximation Ŝn given the data. For
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example, in the context of set learning, S may be defined as the collection
of all closed subsets of X endowed with the Hausdorff distance, and Sρ to
be the support of ρ. In the context of subspace learning, S is the collection
of all linear subspaces of X, with some suitable pseudo-metric such as the
reconstruction criterion in (1.3) and Sρ is the smallest subspace spanned by
points drawn from ρ.

Since Sρ is estimated from random samples, we characterize the learning
error of an algorithm through non asymptotic bounds of the form

P
[
d(Ŝn, Sρ) ≤ Rρ (δ, n)

]
≥ 1− δ (1.1)

for 0 < δ ≤ 1, where the learning error Rρ(δ, n) typically depends on n and
δ, but also on ρ. Once a bound of the form of (1.1), with an asymptotically
vanishing learning error R is obtained, almost sure convergence of d(Ŝn, Sρ)→
0 as n→∞ follows from the Borel-Cantelli Lemma [29].

1.2 Subspace learning

Subspace learning is the problem of finding the smallest linear space sup-
porting data drawn from an unknown distribution. It is a classical problem
in machine learning and statistics and is at the core of a number of spectral
methods for data analysis, most notably PCA [26], but also multidimensional
scaling (MDS) [8, 59]. While traditional methods, such as PCA and MDS, per-
form subspace learning in the original data space, more recent manifold learn-
ing methods, such as isomap [51], Hessian eigenmaps [18], maximum-variance
unfolding [57, 58, 50], locally-linear embedding [39, 42], and Laplacian eigen-
maps [2] (but also kernel PCA [44]), begin by embedding the data in a feature
space, in which subspace estimation is carried out. As pointed out in [22, 4, 3],
all the algorithms in this family have a common structure. They embed the
data in a suitable Hilbert space F , and compute a linear subspace that best
approximates the embedded data. The local coordinates in this subspace then
become the new representation space.

The analysis in this paper applies to learning subspaces both in the data
and in a feature space. In the following, we introduce a general formulation
of the subspace learning problem and derive novel learning error estimates.
Our results rely on natural assumptions on the spectral properties of the
covariance operator associated to the data distribution, and hold for a wide
class of metrics between subspaces. As a special case, we discuss sharp error
estimates for the reconstruction properties of PCA. Key to our analysis is an
operator theoretic approach that has broad applicability to the analysis of
spectral learning methods.
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1.2.1 Problem definition and notation

Given a measure ρ with support M in the unit ball of a separable Hilbert
space F , we consider in this work the problem of estimating, from n i.i.d.
samples Xn = {xi}1≤i≤n, the smallest linear subspace Sρ := span(M) that
contains M . In the framework introduced in Section 1.1, the above problem
corresponds to a choice of input space F , and the space of candidate structures
is the collection of all linear subspaces of F . The target of the learning problem
is Sρ, the smallest linear subspace that contains the support of ρ. As described

in Section 1.1, the quality of an estimate Ŝn of Sρ, for a given metric (or error
criterion) d, is characterized in terms of probabilistic bounds of the form of
Equation (1.1).

In the following the metric projection operator onto a subspace S is de-
noted by PS , where P 2

S = P ∗S = PS (every P is idempotent and self-adjoint).
We denote by ‖ · ‖F the norm induced by the dot product < ·, · >F in F , and
by ‖A‖p := p

√
Tr(|A|p) the p-Schatten, or p-class norm of a linear bounded

operator A [37, p. 84].

1.2.2 Subspace estimators

Spectral estimators can be naturally derived from the characterization of
Sρ in terms of the covariance operator C associated to ρ. Indeed, if C :=
Ex∼ρx ⊗ x is the (uncentered) covariance operator associated to ρ, it is easy
to show that Sρ = RanC. Similarly, given the empirical covariance Cn :=
1
n

∑n
i=1 x⊗ x, we define the empirical subspace estimate,

Ŝn := span(Xn) = RanCn,

where the closure is not needed because Ŝn is finite-dimensional. We also define
the k-truncated (kernel) PCA subspace estimate Ŝkn := RanCkn, where Ckn is
obtained from Cn by keeping only its k top eigenvalues, see also Section 1.2.5.
Note that, since the PCA estimate Ŝkn is spanned by the top k eigenvectors of
Cn, then clearly Ŝkn ⊆ Ŝk

′

n for k < k′, and therefore {Ŝkn}nk=1 is a nested family
of subspaces (all of which are contained in Sρ). As discussed in Section 1.2.5,
since kernel-PCA reduces to regular PCA in a feature space [44] (and can be
computed with knowledge of the kernel alone), the following discussion applies
equally to kernel-PCA estimates.

1.2.3 Performance criteria

We define the pseudo-metric

dα,p(U, V ) := ‖(PU − PV )Cα‖p (1.2)

between subspaces U, V , which is a metric over the collection of subspaces
contained in Sρ, for 0 ≤ α ≤ 1

2 and 1 ≤ p ≤ ∞. Note that dα,p depends on
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ρ through C but this dependence is omitted in the notation. A number of
important performance criteria can be recovered as particular cases of dα,p.
In particular, the so-called reconstruction error [46, 7],

dR(Sρ, Ŝ) := Ex∼ρ‖PSρ(x)− PŜ(x)‖2F (1.3)

is dR(Sρ, ·) = d1/2,2(Sρ, ·)2. Note that dR is a natural criterion because a k-
truncated PCA estimate minimizes a suitable error dR over all subspaces of
dimension k. Clearly, dR(Sρ, Ŝ) vanishes whenever Ŝ contains Sρ and, be-

cause the family {Ŝkn}nk=1 of PCA estimates is nested, then dR(Sρ, Ŝ
k
n) is

non-increasing with k. As shown in [32], a number of unsupervised learn-
ing algorithms, including (kernel) PCA, k-means, k-flats, sparse coding, and
non-negative matrix factorization, can be written as a minimization of dR over
an algorithm-specific class of sets (e.g. over the set of linear subspaces of a
fixed dimension in the case of PCA).

1.2.4 Summary of results

Our main technical contribution is a bound of the form of Eq. (1.1), for the
k-truncated PCA estimate Ŝkn (with the empirical estimate Ŝn := Ŝnn being a
particular case), whose proof is postponed to Sec. 1.5.

We begin by bounding the distance dα,p between Sρ and the k-truncated

PCA estimate Ŝkn, given a known covariance C.

Theorem 1 Let {xi}1≤i≤n be drawn i.i.d. according to a probability measure
ρ supported on the unit ball of a separable Hilbert space F , with covariance C.
Assuming n > 3, 0 < δ < 1, 0 ≤ α ≤ 1

2 , 1 ≤ p ≤ ∞, the following holds for
each k ∈ {1, . . . , n}:

P
[
dα,p(Sρ, Ŝ

k
n) ≤ 3tαk

∥∥Cα(C + tkI)−α
∥∥
p

]
≥ 1− δ (1.4)

where tk = max{σk, 9
n log n

δ }, and σk is the k-th top eigenvalue of C.

We say that C has eigenvalue decay rate of order r if there are constants
q,Q > 0 such that qj−r ≤ σj ≤ Qj−r, where σj are the (decreasingly ordered)
eigenvalues of C, and r > 1. From Equation (1.2) it is clear that, in order for
the subspace learning problem to be well-defined, it must be ‖Cα‖p < ∞, or
alternatively: αp > 1/r. Note that this condition is always met for p = ∞,
and also holds in the reconstruction error case (α = 1/2, p = 2), for any decay
rate r > 1.

Knowledge of an eigenvalue decay rate can be incorporated into Theorem 1
to obtain explicit learning rates, as follows.

Theorem 2 (Polynomial eigenvalue decay) Let C have eigenvalue decay
rate of order r. Under the assumptions of Theorem 1, it holds, with probability
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1− δ:

dα,p(Sρ, Ŝ
k
n) ≤

{
Q′k−rα+

1
p if k < k∗n (polynomial decay)

Q′k∗n
−rα+ 1

p if k ≥ k∗n (plateau)
(1.5)

where it is k∗n =
(

qn
9 log(n/δ)

)1/r
, and

Q′ = 3

(
Q

1
r

Γ
(
αp− 1

r

)
Γ
(
1 + 1

r

)
Γ
(
1
r

) ) 1
p

. (1.6)

The above theorem guarantees a decay of dα,p with increasing k, at a rate
of k−rα+1/p, up to k = k∗n, after which the bound remains constant. The
estimated plateau threshold k∗ is thus the value of truncation past which the
upper bound does not improve. Note that, as described in Section 1.4, this
error decay and plateau behavior is observed in practice.

The proofs of Theorems 1 and 2 rely on recent non-commutative Bernstein-
type inequalities on operators [5, 52], and a novel analytical decomposition.
Note that classical Bernstein inequalities in Hilbert spaces (e.g. [34]) could
also be used instead of [52]. While this approach would simplify the analysis,
it produces looser bounds, as described in Section 1.5.

If we consider an algorithm that produces, for each set of n samples, an
estimate Ŝkn with k ≥ k∗n then, by plugging the definition of k∗n into Eq. 1.5,
we obtain an upper bound on dα,p as a function of n.

Corollary 3 Let C have eigenvalue decay rate of order r, and Q′, k∗n be as
in Theorem 2. Let Ŝ∗n be a truncated subspace estimate Ŝkn with k ≥ k∗n. It is,
with probability 1− δ,

dα,p(Sρ, Ŝ
∗
n) ≤ Q′

(
9 (log n− log δ)

qn

)α− 1
rp

Remark 4 Note that, by setting k = n, the above corollary also provides
guarantees on the rate of convergence of the empirical estimate Ŝn = span(Xn)
to Sρ, of order

dα,p(Sρ, Ŝn) = O

((
log n− log δ

n

)α− 1
rp

)
.

Corollary 5 and remark 4 are valid for all n such that k∗n ≤ n (or equiva-
lently such that nr−1(log n− log δ) ≥ q/9). Note that, because ρ is supported
on the unit ball, its covariance has eigenvalues no greater than one, and there-
fore it must be q < 1. It thus suffices to require that n > 3 to ensure the
condition k∗n ≤ n to hold.
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1.2.5 Kernel PCA and embedding methods

One of the main applications of subspace learning is to perform dimen-
sionality reduction. In particular, one may find nested subspaces of dimen-
sions 1 ≤ k ≤ n that minimize the distances from the original to the pro-
jected samples. This procedure is known as the Karhunen-Loève, PCA, or
Hotelling transform [26], and has been generalized to Reproducing-Kernel
Hilbert Spaces (RKHS) [44].
In particular, the above procedure amounts to computing an eigen-
decomposition of the empirical covariance

Cn =

n∑
i=1

σiui ⊗ ui,

where the k-th subspace estimate is Ŝkn := RanCkn = span{ui : 1 ≤ i ≤ k}.
In the case of kernel PCA, the samples {xi}1≤i≤n belong to some RKHS F ,
and we can think of them as the embedding xi := φ(zi) of some original
data (z1, . . . , zn) ∈ Zn, where e.g. Z = RD. The measure ρ can be seen as
the measure induced by the embedding and the original data distribution.
Interestingly, in practice we may only have indirect information about φ in
the form a kernel function K : Z × Z → R: a symmetric, positive definite
function satisfying K(z, w) = 〈φ(z), φ(w)〉F [48] (for technical reasons, we also
assume K to be continuous). Recall that every such K has a unique associated
RKHS, and viceversa [48, p. 120–121], whereas, given K, the embedding φ is
only unique up to an inner product-preserving transformation. The following
reproducing property f(x) = 〈f,K(z, ·)〉F holds for all z ∈ Z, f ∈ F .

If the embedding is defined through a kernel K, it easy to see that the k-
truncated kernel PCA can be computed considering the n by n kernel matrix
Kn, where (Kn)i,j = K(xi, xj) [44]. It is easy to see that the k-truncated kernel

PCA subspace Ŝkn minimizes the empirical reconstruction error dR(Ŝn, Ŝ),
among all subspaces Ŝ of dimension k. Indeed, it is

dR(Ŝn, Ŝ) = Ex∼ρ̂‖x− PŜ(x)‖2F = Ex∼ρ̂
〈
(I − PŜ)x, (I − PŜ)x

〉
F

= Ex∼ρ̂
〈
I − PŜ , x⊗ x

〉
HS

=
〈
I − PŜ , Cn

〉
HS

,
(1.7)

where 〈·, ·〉
HS

is the Hilbert-Schmidt inner product. From this, it clearly fol-
lows that the k-dimensional subspace minimizing Equation 1.7 (maximizing〈
PŜ , Cn

〉
) is spanned by the k top eigenvectors of Cn. Since we are interested

in the expected error dR(Sρ, Ŝ
k
n) of the kernel PCA estimate (rather than the

empirical error dR(Ŝn, Ŝ)), we may obtain a learning rate for Equation 1.7 by
specializing Theorem 2 to the reconstruction error, for all k (Theorem 2), and
for k ≥ k∗ with a suitable choice of k∗ (Corollary 5). In particular, recalling
that dR(Sρ, ·) = dα,p(Sρ, ·)2 with α = 1/2 and p = 2, and choosing a value
of k ≥ k∗n that minimizes the bound of Theorem 2, we obtain the following
result.
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Corollary 5 (Performance of PCA / Reconstruction error) Let C have
eigenvalue decay rate of order r, and Ŝ∗n be as in Corollary 3. Then it holds,
with probability 1− δ,

dR(Sρ, Ŝ
∗
n) = O

((
log n− log δ

n

)1−1/r
)
.

1.2.6 Comparison with previous results in the literature

Figure 1.1 shows a comparison of our learning rates with existing rates in
the literature [7, 46]. The plot shows the polynomial decay rate c of the high
probability bound dR(Sρ, Ŝ

k
n) = O(n−c), as a function of the eigenvalue decay

rate r of the covariance C, computed at the best value k∗n (which minimizes
the bound).

4 6 8 10

0.2

0.4

0.6

0.8

r

FIGURE 1.1: Known upper bounds for the polynomial decay rate c (for
the best choice of k), for the expected distance from a random sample to the
empirical k-truncated kernel-PCA estimate, as a function of the covariance
eigenvalue decay rate (higher is better). Our bound (purple line), consistently
outperforms previous ones [46] (black line). The top (dashed) line [7], has
significantly stronger assumptions, and is only included for completeness.

The learning rate exponent c, under a polynomial eigenvalue decay as-

sumption of the data covariance C, is c = s(r−1)
r−s+sr for [7] and c = r−1

2r−1 for [46],
where s is related to the fourth moment. Note that, among the two (purple
and black) that operate under the same assumptions, our bound (purple line)
is the best by a wide margin. The top, best performing, dashed line [7] is
obtained for the best possible fourth-order moment constraint s = 2r, and is
therefore not a fair comparison. However, it is worth noting that our bounds
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perform almost as well as the most restrictive one, even when we do not in-
clude any fourth-order moment constraints.
Choice of truncation parameter k. Since, as pointed out in Section 1.2.2,
the subspace estimates Ŝkn are nested for increasing k (i.e. Ŝkn ⊆ Ŝk

′

n for
k < k′), the distance dα,p(Sρ, Ŝ

k
n), and in particular the reconstruction error

dR(Sρ, Ŝ
k
n), is a non-increasing function of k. As discussed [7], this suggests

that there is no bias-variace trade- off in the choice of k. Indeed, the fact that
the estimates Ŝkn become increasingly close to Sρ as k increases indicates that,

when minimizing dα,p(Sρ, Ŝ
k
n), the best choice is simply k = n.

Interestingly, however, both in practice (Section 1.4), and in theory (Sec-
tion 1.2.4), we observe that a typical behavior for the subspace learning prob-
lem in high dimensions (e.g. kernel PCA) is that there is a certain value of
k = k∗n, past which performance plateaus. For problems such as spectral em-
bedding methods [51, 18, 58], in which a degree of dimensionality reduction
is desirable, producing an estimate Ŝkn where k is close to the plateau thresh-
old may be a natural parameter choice: it leads to an estimate of the lowest
dimension (k = k∗n), whose distance to the true Sρ is almost as low as the
best-performing one (k = n).

1.3 Set learning

The problem of set, or support estimation has received a great deal
of attention in the Statistics community since the sixties [36, 21], and
since then a number of practical approaches have been proposed to address
it [17, 27, 20, 11, 53, 43, 13, 35, 49, 55, 45, 6, 12]. Support estimation is often
considered in machine learning in situations in which it is difficult to gather
negative examples (as it often happens in biological and biomedical problems)
or when the negative class is not well defined (as in object detection problems
in computer vision), as is the case in one class estimation [43], and novelty
and anomaly detection [31, 9].

In this section, we describe an approach that is based on reducing the set
learning problem to that of learning a subspace. The results in this section
largely draw from [40, 14, 41].

1.3.1 Set Learning via Subspace Learning

We begin by recalling how support estimation can be reduced to sub-
space learning, and discuss how our results specialize to this setting. From
an algorithmic perspective, the approach we discuss is closely related to
the one in [25] and has been successfully applied in several practical do-
mains [38, 28, 54, 24, 30, 10, 47].
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Central to the connection between set and subspace learning is the notion
of separating kernel and separating feature map, which was introduced in [15].

Let K be a reproducing kernel on some space Z, and (φ,F) an associ-
ated feature map and feature space pair (see section 1.2.5). For simplicity,
we assume that ‖φ(z)‖F = 1 for all z ∈ Z. This assumption is without loss
of generality because a kernel with non-zeros in its diagonal can always be
normalized. Given a non-empty set C ⊆ Z, let FC = span{φ(z) | z ∈ C} be
the closure of all finite linear combinations of points in the range φ(C) of C.
The distance from any given point φ(z), with z ∈ Z, to the linear subspace
FC is

dFC (φ(z)) := inf
f∈FC

‖φ(z)− f‖F .

The following, key definition is equivalent to the separating property in
Definition 1 of [56].

Definition 1 We say that a feature map φ (and hence the corresponding ker-
nel) separates a set C ⊂ Z if for all z ∈ Z it holds:

dFC (φ(z)) = 0 iff z ∈ C.

An example of separating kernel for Rd is the exponential kernel K(x, x′) =
e−‖x−x

′‖. The proof of this fact, see [14], crucially depends on the fact that
for each compact subset of Rd the associated reproducing kernel Hilbert space
contains functions that are zero on the set and non-zero outside. Interest-
ingly, the Gaussian kernel is not separating, because the associated Hilbert
space contains only analytic functions, and the only function that is zero on
a compact subset (with non-empty interior) is the zero function.

The separating property has a clear geometric interpretation in the feature
space: the set φ(Sρ) is the intersection of the closed subspace FSρ (the smallest
linear subspace containing φ(Sρ)), and φ(Z) (see Figure 1.2).

Using the notion of separating kernel, the support Sρ can be characterized

in terms of the subspace Fρ = span φ(Sρ) ⊆ F . More precisely, it can be
shown (see the next subsection) that, if the feature map φ separates Sρ, then
it is

Sρ = {z ∈ Z | dFρ(φ(z)) = 0}.

The above discussion naturally leads to an empirical estimate Ŝn = {z ∈
Z | dFn(φ(z)) ≤ τ} of Sρ, where F̂n = span φ(Zn), and τ > 0. Given a training

set z1, . . . , zn, the estimator Ŝn is therefore the set of points z ∈ Z whose as-
sociated distance from φ(z) to the linear space spanned by {φ(z1), . . . , φ(zn)}
is sufficiently small, according to some tolerance τ . Any point with distance
greater than τ will be considered to be outside of the support by this estimator.

With the above choice of estimator, it can be shown that almost sure
convergence limn→∞ dH(Sρ, Ŝn) = 0 in the Hausdorff distance [1] is related to

the convergence of F̂n to Fρ [15]. More precisely, if the eigenfunctions of the
covariance operator C = Ez∼ρ [φ(z)⊗ φ(z)] are uniformly bounded, then it
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Ψ(X)
Ψ(x∗)

FIGURE 1.2: The input space Z and the support Sρ are mapped into the
feature space F by the feature map φ. Letting Fρ := FSρ be the smallest
linear subspace containing φ(Sρ) then, if the kernel is separable, the image of
the support φ(Sρ) is given by the intersection between φ(Z) and Fρ. By the
separating property, a point z belongs to the support if and only the distance
between φ(z) and Fρ is zero.

suffices for Hausdorff convergence to bound from above d r−1
2r ,∞

(where r > 1

is the eigenvalue decay rate of C) as shown in Section 1.3.2.

1.3.2 Consistency results

Before proving the consistency of the set estimator Ŝn we show an improved
learning rate for the associated subspace F̂n. In particular we study the linear
subspace F̂∗n that is the one spanned by the first k components of the empirical
covariance matrix Ĉn, where k ≥ k∗n (see Subsection 1.2.5 and Theorem 2).
Note that F̂∗n = F̂n when k = n. The following result specializes Corollary 3
to this setting.

Corollary 6 (Performance of KPCA with the set learning metric) If
0 ≤ α ≤ 1

2 , then it holds, with probability 1− δ,

dα,∞(Fρ, F̂∗n) = O

((
log n− log δ

n

)α)
where the constant in the Landau symbol does not depend on δ.
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Letting α = r−1
2r above yields a high probability bound of order O

(
n−

r−1
2r

)
(up to logarithmic factors), which is considerably sharper than the bound

O
(
n−

r−1
2(3r−1)

)
found in [16] (Theorem 7). Note that these are upper bounds for

the best possible choice of k (which minimizes the bound). While the optima
of both bounds vanish with n → ∞, their behavior is qualitatively different.
In particular, the bound of [16] is U-shaped, and diverges for k = n, while
ours is L-shaped (no trade-off), and thus also convergent for k = n. Therefore,
when compared with [16], our results suggest that no regularization is required
from a statistical point of view though, as discussed in the following, it may
be required for numerical stability. With the above tools at hand, we are now
in a position to prove the consistency of Ŝn.

Theorem 7 (Consistency of Set Learning) Let the input space Z be
metrizable, K be a kernel on Z with the separating property [15], let the di-
mension k of the empirical subspace F̂∗n, be k∗n ≤ k ≤ n and the threshold
parameter τ = max1≤i≤n dF̂kn

(φ(zi)), then

Ŝ∗n =
{
z ∈ Z

∣∣∣ dF̂∗n(φ(z)) ≤ τ
}

(1.8)

is a universally consistent unsupervised learning algorithm.

Proof. By Theorem 6 of [56] and our Corollary 6, the estimator Ŝ∗n satisfies
the universal consistency conditions given in Section 1.1, under the given
hypotheses. �

We note that the above result is an example of how kernel embedding
techniques can used to provably estimate geometric invariants of the the orig-
inal data distribution. Note that the considered estimator achieve this without
having to explicitly solve a pre-image problem [33].

We end this section noting that, while, as proven in Corollary 6, regu-
larization is not needed from a statistical perspective, it can play a role in
ensuring numerical stability in practice. Indeed, in order to find Ŝ, we com-
pute dF̂n(φ(z)) with z ∈ Z. Using the reproducing property of K, it can

be shown that, for z ∈ Z, it is dF̂kn
(φ(z)) = K(z, z) −

〈
tz, (K̂

k
n)†tz

〉
where

(tz)i = K(z, zi), K̂n is the Gram matrix (K̂n)ij = K(zi, zj), K̂
k
n is the rank-k

approximation of K̂n, and (K̂k
n)† is the pseudo-inverse of K̂k

n. The computa-
tion of Ŝ therefore requires a matrix inversion, which is prone to instability for
high condition numbers. Figure 1.3 shows the behavior of the error that results
from replacing F̂n by its k-truncated approximation F̂kn . For large values of
k, the small eigenvalues of F̂n are used in the inversion, leading to numerical
instability.
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FIGURE 1.3: The experimental behavior of the distance dα,∞(Ŝk, Sρ) be-
tween the empirical and the actual support subspaces, with respect to the
regularization parameter. The setting is the one of section 1.4. Here the ac-
tual subspace is analytically computed, while the empirical one is computed on
a dataset with n = 1000 and 32bit floating point precision. Note the numerical
instability as k tends to 1000.

1.4 Numerical experiments

In order to validate our analysis empirically, we consider the following ex-
periment. Let ρ be a uniform one-dimensional distribution in the unit interval.
We embed ρ into a reproducing-kernel Hilbert space F using the exponential
of the `1 distance (k(u, v) = exp{−‖u − v‖1}) as kernel. Given n samples
drawn from ρ, we compute its empirical covariance in F (whose spectrum is
plotted in Figure 1.4 (top)), and truncate its eigen-decomposition to obtain a
subspace estimate F̂kn , as described in Section 1.2.2.

Figure 1.4 (right) is a box plot of reconstruction error dR(Fρ, F̂kn) associ-

ated with the k-truncated kernel-PCA estimate F̂kn (the expected distance in
F of samples to F̂kn), with n = 1000 and varying k. While dR is computed
analytically in this example, and Fρ is fixed, the estimate F̂kn is a random
variable, and hence the variability in the graph. Notice from the figure that,
as pointed out in [7] and discussed in Section 1.2.6, the reconstruction error
dR(Fρ, F̂kn) is always a non-increasing function of k, due to the fact that the

kernel-PCA estimates are nested: F̂kn ⊂ F̂k
′

n for k < k′ (see Section 1.2.2). The
graph is highly concentrated around a curve with a steep intial decay, until
reaching some sufficiently high k, past which the reconstruction (pseudo) dis-
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FIGURE 1.4: The spectrum of the empirical covariance (top), and the ex-
pected distance from a random sample to the empirical k-truncated kernel-
PCA subspace estimate (bottom), as a function of k (n = 1000, 1000 trials
shown in a boxplot). Our predicted plateau threshold k∗n (Theorem 2) is a
good estimate of the value k past which the distance stabilizes.

tance becomes stable, and does not vanish. In our experiments, this behavior
is typical for the reconstruction distance and high-dimensional problems.

Due to the simple form of this example, we are able to compute analytically
the spectrum of the true covariance C. In this case, the eigenvalues of C
decay as 2γ/((kπ)2 + γ2), with k ∈ N, and therefore they have a polynomial
decay rate r = 2 (see Section 1.2.4). Given the known spectrum decay rate,
we can estimate the plateau threshold k = k∗n in the bound of Theorem 2,
which can be seen to be a good approximation of the observed start of a
plateau in dR(Fρ, F̂kn) (Figure 1.4, right). Notice that our bound for this case
(Corollary 5) similarly predicts a steep error decay until the threshold k = k∗n
(indicated in the figure by the vertical blue line), and a plateau afterwards.
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1.5 Sketch of the proofs

For the sake of completeness we sketch the main step in the proof of our
main theoretical result, Theorem 1, with some details omitted in the interest
of conciseness.

For each λ > 0, we denote by rλ(x) := 1{x > λ} the step function with
a cut-off at λ. Given an empirical covariance operator Cn, we will consider
the truncated version rλ(Cn) where, in this notation, rλ is applied to the
eigenvalues of Cn, that is, rλ(Cn) has the same eigen-structure as Cn, but its
eigenvalues that are less or equal to λ are clamped to zero.

In order to prove the bound of Equation (1.4), we begin by proving a more
general upper bound of dα,p(Sρ, Ŝ

k
n), which is split into a random (A), and a

deterministic part (B, C). The bound holds for all values of a free parameter
t > 0, which is then constrained and optimized in order to find the (close to)
tightest version of the bound.

Lemma 8 Let t > 0, 0 ≤ α ≤ 1/2, and λ = σk(C) be the k-th top eigenvalue
of C, it is,

dα,p(Sρ, Ŝ
k
n) ≤ ‖(C + tI)

1
2 (Cn + tI)−

1
2 ‖2α∞︸ ︷︷ ︸

A

· (1.9)

· {3/2(λ+ t)}α︸ ︷︷ ︸
B

· ‖Cα(C + tI)−α‖p︸ ︷︷ ︸
C

(1.10)

Note that the right-hand side of Equation (1.9) is the product of three
terms, the left of which (A) involves the empirical covariance operator Cn,
which is a random variable, and the right two (B, C) are entirely deterministic.
While the term B has already been reduced to the known quantities t, α, λ,
the remaining terms are bounded next. We bound the random term A in the
next Lemma, whose proof makes use of recent concentration results [52].

Lemma 9 (Term A) Let 0 ≤ α ≤ 1/2, for each 9
n log n

δ ≤ t ≤ ‖C‖∞, with
probability 1− δ it is

(2/3)α ≤ ‖(C + tI)
1
2 (Cn + tI)−

1
2 ‖2α∞ ≤ 2α

Lemma 10 (Term C) Let C be a symmetric, bounded, positive semidefinite
linear operator on F . If σk(C) ≤ f(k) for k ∈ N, where f is a decreasing
function then, for all t > 0 and α ≥ 0, it holds∥∥Cα(C + tI)−α

∥∥
p
≤ inf

0≤u≤1
guαt

−uα (1.11)

where guα =
(
f(1)uαp +

∫∞
1
f(x)uαpdx

)1/p
. Furthermore, if f(k) = gk−1/γ ,

with 0 < γ < 1 and αp > γ, then it holds∥∥Cα(C + tI)−α
∥∥
p
≤ Qt−γ/p (1.12)
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where Q = (gγΓ(αp− γ)Γ(1 + γ)/Γ(γ))
1/p

.

The combination of Lemmas 8 and 9 leads to the main theorem 1, which
is a probabilistic bound, holding for every k ∈ {1, . . . , n}, with a deterministic
term ‖Cα(C + tI)−α‖p that depends on knowledge of the covariance C. In
cases in which some knowledge of the decay rate of C is available, Lemma 10
can be applied to obtain Theorem 2 and Corollary 3. Finally, Corollary 5 is
simply a particular case for the reconstruction error dR(Sρ, ·) = dα,p(Sρ, ·)2,
with α = 1/2, p = 2.

As noted in Section 1.2.4, looser bounds would be obtained if classical
Bernstein inequalities in Hilbert spaces [34] were used instead. In particular,
Lemma 9 would result in a range for t of qn−r/(r+1) ≤ t ≤ ‖C‖∞, implying
k∗ = O(n1/(r+1)) rather than O(n1/r), and thus Theorem 2 would become (for
k ≥ k∗) dα,p(Sρ, S

k
n) = O(n−αr/(r+1)+1/(p(r+1))) (compared with the sharper

O(n−α+1/rp) of Theorem 2). For instance, for p = 2, α = 1/2, and a decay rate
r = 2 (as in the example of Section 1.4), it would be: d1/2,2(Sρ, Sn) = O(n−1/4)

using Theorem 2, and d1/2,2(Sρ, Sn) = O(n−1/6) using classical Bernstein
inequalities.

1.6 Conclusions

The problem of set learning consists in estimating the smallest subset of
the input space containing the data distribution. In this chapter the problem
has been investigated by analyzing its relations with subspace learning, that
consists in estimating the smallest linear subspace containing the distribution.
In particular we showed that, given a suitable feature map, the set learning
problem can be cast as a subspace learning problem in the associated feature
space. In order to analyze the theoretical properties of the first problem, the
statistical analysis for the second has been developed obtaining novel and
sharper sample complexity upper bounds. Finally, by exploiting such results,
the consistency of set learning has been established. The chapter is concluded
by numerical examples that show the effectiveness of our analysis.
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