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Vector valued reproducing kernel Hilbert
spaces and universality
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Abstract

This paper is devoted to the study of vector valued reproducing
kernel Hilbert spaces. We focus on two aspects: vector valued feature
maps and universal kernels. In particular we characterize the structure
of translation invariant kernels on abelian groups and we relate it to
the universality problem.

1 Introduction

In learning theory, reproducing kernel Hilbert spaces (RKHS) are an impor-
tant tool for designing learning algorithms, see for example [8] 29, 31] and
the book [9]. In the usual setting the elements of the RKHS are scalar func-
tions. The mathematical theory for scalar RKHS has been established in the
seminal paper [I]. For a standard reference see the book [25].

In machine learning there is an increasing interest for vector valued learn-
ing algorithms, see [20, 12, 4]. In this framework, the basic object is a Hilbert
space of functions f from a set X into a normed vector space ) with the
property that, for any = € X, ||f(z)| < C. | f| for a positive constant C,
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independent of f.

The theory of vector valued RKHS has been completely worked out in the
seminal paper [27], devoted to the characterization of the Hilbert spaces that
are continuously embedded into a locally convex topological vector space, see
[23]. In the case Y is itself a Hilbert space, the theory can be simplified as
shown in [21], [0 5]. As in the scalar case, a RKHS is completely characterize
by a map K from X x X into the space of bounded operators on ) such that

N
Z <K([E“ xj)?/j? yl) 2 0
ij=1

for any xy,...,zy in X and yq,...,yny in Y. Such a map is called a Y-
reproducing kernel and the corresponding RKHS is denoted by Hx.

This paper focuses on three aspects of particular interest in vector valued
learning problems:

e vector valued feature maps;
e universal reproducing kernels;
e translation invariant reproducing kernels.

The feature map approach is the standard way in which scalar RKHS are pre-
sented in learning theory, see for example [20]. A feature map is a function
mapping the input space X into an arbitrary Hilbert space H in such a way
that H can be identified with a unique RKHS. Conversely, any RKHS can be
realized as a closed subspace of a concrete Hilbert space, called feature space,
by means of a suitable feature map — typical examples of feature spaces are
¢* and L?(X, p1) for some measure p.
The concept of feature map is extended to the vector valued setting in [6l [5],
where a feature map is defined as a function from X into the space of bounded
operators between ) and the feature space H.
In the first part of our paper, Section [3 shows that sum, product and compo-
sition with maps of RKHS can be easily described by suitable feature maps.
In particular we give an elementary proof of Schur lemma about the product
of a scalar kernel with a vector valued kernel. Moreover, we present several
examples of vector valued RKHS, most of them considered in [22] 5]. For
each one of them we exhibit a nice feature space. This allows to describe the
impact of these examples on some learning algorithms, like the regularized
least-squares [13].

In the second part of the paper, Section M discusses the problem of char-
acterizing universal kernels. We say that a Y-reproducing kernel is universal



if the corresponding RKHS Hy is dense in L?(X, u;)) for any probability
measure 1 on the input space X. This definition is motivated observing that
in learning theory the goal is to approximate a target function f* by means
of a prediction function f, € Hg, depending on the data, in such a way
the distance between f* and f,, goes to zero when the number of data n
goes to infinity. In learning theory the “right” distance is given by the norm
in L2(X,u;Y), where p is the (unknown) probability distribution modeling
the sample of the input data, see [§]. The possibility of learning any target
function f* by means of functions in H is precisely the density of Hy in
L*(X,u; V). Since the probability measure p is unknown, we require that
the above property holds for any choice of u — compare with the definition of
universal consistency for a learning algorithm [I8]. Under the condition that
the elements of Hy are continuous functions vanishing at infinity, we prove
that universality of H is equivalent to require that Hy is dense in Co(X; Y),
the Banach space of continuous functions vanishing at infinity with the uni-
form norm. If X is compact and H = C, the density of Hx in Co(X;)) is
precisely the definition of universality given in [30} [32]. For arbitrary X and
Y, another definition of universality is suggested in [5] under the assumption
that the elements of Hyx are continuous functions. We show that this last
notion is equivalent to require that Hx is dense in L?(X, pu; ) for any prob-
ability measure p with compact support, or that Hg is dense in C(X;)),
the space of continuous functions with the compact-open topology. If X is
not compact, the two definitions of universality are not equivalent, as we
show in two examples. To avoid confusion we refer to the second notion as
compact-universality.

We characterize both universality and compact-universality in terms of the
injectivity of the integral operator on L?(X, u; V) whose kernel is the repro-
ducing kernel K. For compact-universal kernels, this result is presented in a
slightly different form in [5] — compare Theorem 2l below with Theorem 11 of
[5]. However, our statement of the theorem does not require a direct use of
vector valued measures, our proof is simpler and it is based on the fact that
any bounded linear functional 7" on Cy(X;Y) is of the form

T(f) = /X (f(2), h(x)) du(a),

where p is a probability measure and h is a bounded measurable function
from X to ) — see Appendix [Al Notice that, though in learning theory
the main issue is the density of the RKHS Hy in L?(X, u;)), however, our
results hold if, in the definition of universal kernels, we replace L*(X, u; ))
with LP(X, u;Y) for any 1 < p < oo. In particular, we show that Hyg is
dense in Cy(X;)) if and only if there exists 1 < p < oo such that Hyg is
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dense in LP(X,u;)) for any probability measure p. In that case, Hy is
dense in LY(X, u; ) for any 1 < g < c0.

In the third part of the paper, under the assumption that X is a group,
Section [Blstudies translation invariant reproducing kernels, that is, the kernels
such that K (z,t) = K.(t7'x) for some operator valued function K, : X —
L(Y) of completely positive type. In particular, we show that any translation
invariant kernel is of the form

K(x,t) = Amp—1, A"

for some unitary representation m of X acting on a Hilbert space ‘H, and a
bounded operator A : H — Y. If X is an abelian group, SNAG theorem [16]
provides a more explicit description of the reproducing kernel K, namely

K1) = / x(t — 2)dQ(),

X

where X is the dual group and () is a positive operator valued measure
on X. The above equation is precisely the content of Bochner theorem for
operator valued functions of positive type [2,[15]. In particular, we show that
the corresponding RKHS Hj can be always realized as a closed subspace of
L2(X ,,Y) where ¥ is a suitable positive measure on X. In this setting,
we give a sufficient condition ensuring that a translation invariant kernel is
universal. This condition is also necessary if X is compact or ) = C. For
scalar kernels and compact-universality this result is given in [22]. We end
the paper by discussing in Section [ the universality of some of the examples
introduced in Section Bl

2 Background

In this section we set the main notations and we recall some basic facts about
vector valued reproducing kernels.

2.1 Notations and assumptions

In the following we fix a locally compact second countable topological space
X and a complex separable Hilbert space )/, whose norm and scalar product
are denoted by ||-|| and (-, -) respectively. Local compactness of X is needed in
order to prove Theorem [7lin the appendix, which is at the root of Theorem [11
The separability of X and ) will avoid some problems in measure theory.
All these assumptions are always satisfied in learning theory.



We denote by F(X;)) the vector space of functions f : X — ), by
C(X; ) the subspace of continuous functions, and by Cy(X; ) the subspace
of continuous functions vanishing at infinity. If ) = C, we set C(X) =
C(X;C) and Cy(X) = Co(X,C). If X is compact, Co(X;Y) =C(X; D).

We regard C(X;)) as a locally convex topological vector space by endowing
it with the compact-open topolog and Co(X;)) as a Banach space with
respect to the uniform norm || f|| = max,ex || f(2)]-

Let B(X) be the Borel o-algebra of X. By a measure on X we mean
a o-additive map p : B(X) — [0,400] which is finite on compact setdd.
We say that p is a probability measure if u(X) = 1. For 1 < p < oo,
LP(X, ;YY) denotes the Banach space of (equivalence classes of) measur-
abldd functions f X — Y such that ||f||” is p-integrable, with norm

1f1l, = (fy ||f(x)||pdu(x))l/p. If p = 2 we denote the scalar product in
L*(X, 1, Y) by (-,+),. For p = 0o, L>(X,p;Y) is the Banach space of u-
essentially bounded measurable functions f : X — Y with norm || f|| oo =

p—esssup, ey | f(2)]|
If 1 is a probability measure, clearly

Co(X;Y) C LP(X, 1Y) C LUX, 1))

for all 1 < ¢ < p < oo, each inclusion being continuous. Moreover, since X
is locally compact and second countable, Co(X; Y) is dense in LP(X, u; )) for
any 1 < p < o0.

If H is an arbitrary (complex) Hilbert space we denote its scalar product
by (-, )5, and its norm by ||-||,,. When H’ is another Hilbert space, we denote
by L(H;H') the Banach space of bounded operators from H to H' endowed
with the uniform norm. In the case H = H’', we set L(H) = L(H; H).
Given wy, wy € ‘H, we let w; ® wsy be the rank one operator

(w1 @ Wa)v = (v, W), We v e H.

2.2  Vector valued reproducing kernels

We briefly recall the main properties of vector valued reproducing kernel
Hilbert spaces. Given X and ) as above, a map K : X x X — L()) is

!This is the topology of uniform convergence on compact subsets defined by the family
of seminorms || f||, = max,cz || f(z)| for Z varying over the compact subsets in X.

2Since X is locally compact second countable, then p is both inner and outer regular.

3Since ) is separable, measurability is equivalent to the fact that (f(-),) is measurable
for all y € Y.



called a YV-reproducing kernel if

N

Z (K (i, 25)y5,9:) > 0

1,j=1

for any x1,...,2xy in X, y1,...,yyin Yand N > 1. Givenz € X, K, : Y —
F(X;Y) denotes the linear operator whose action on a vector y € ) is the
function K,y € F(X;)) defined by

(Kuy)(t) = K(t,r)y teX. (1)

Given a Y-reproducing kernel K, there is a unique Hilbert space Hx C F(X;))
satisfying

K, e L(Y, Hk) reX (2)
flz)=K,f re X, f € Hg, (3)

where K} : Hyx — Y is the adjoint of K, see Proposition 2.1 of [6]. The
space Hp is called the reproducing kernel Hilbert space associated with K,
the corresponding scalar product and norm are denoted by (-, ), and ||-|| «,
respectively. As a consequence of ([3]), we have that

K(z,t) = K;K; r,te X
Hi = span {K,y |z € X,y € V}.

As discussed in the introduction, the space Hx can be realized as a closed
subspace of some arbitrary Hilbert space by means of a suitable feature map,
as shown by the next result, see Proposition 2.4 of [6].

Proposition 1. Let H be a Hilbert space and v : X — B(Y;H). Then the
operator W : H — F(X;)) defined by

(Wu)(z) = viu, ueH, reX, (4)

s a partial isometry from H onto the reproducing kernel Hilbert space H
with reproducing kernel

K(o,) =7y a,l€X, (5)
Moreover, W*W s the orthogonal projection onto
ker W+ =8pan {y,y |z € X, y € Y},

and

/1l = mf{[[ully | we ™, Wu= [}



The map ~ is usually called the feature map, W the feature operator and
H the feature space. Since W is an isometry from ker W+ onto Hy, the map
W allows us to identify Hz with the closed subspace ker W+ of H. With a
mild abuse of notation, we say that Hx is embedded into H by means of the
feature operator W.
Comparing () with (B]), we notice that any RKHS Hx admits a trivial feature
map, namely v, = K,. In this case the feature operator is the identity.
Conversely, if H is a Hilbert space of functions from X to Y such that || f|| <
Cy || f|l5, for some positive constant C,, then there exists a bounded operator
Y: + Y — H such that f(xz) = v5f. Hence, the above proposition implies
that H is a RKHS with kernel given by (B) and that the feature operator is
the identity.

2.3 Mercer and Cy-kernels

In this paper, we mainly focus on reproducing kernel Hilbert spaces, whose
elements are continuous functions. In particular we study the following two
classes of reproducing kernels.

Definition 1. A reproducing kernel K : X x X — L()) is called
(i) Mercer provided that Hk is a subspace of C(X;)Y);
(ii) Co provided that Hy is a subspace of Co(X;)).

The choice of C(X;Y) and Co(X;)) is motivated in Section [ where we
discuss the universality problem.

The following proposition directly characterizes Mercer and Cy-kernels in
terms of properties of the kernels.

Proposition 2. Let K be a reproducing kernel.

(i) The kernel K is Mercer iff the function x — ||K(z,z)| is locally
bounded and K,y € C(X;Y) for allz € X and y € .

(ii) The kernel K is Cy iff the function x — ||K(x,x)| is bounded and
K,y € Co(X;Y) forallz € X andy € ).

If K is a Mercer kernel, the inclusion Hyx — C(X;Y) is continuous. If K is
a Co-kernel the inclusion Hyi — Co(X;Y) is continuous. In both cases, the
space Hy 1s separable.



Proof. We prove only (ii), since the other proof is similar — see Proposition 5.1
of [6]. If Hx C Co(X;D), it is clear that K,y is an element of Cy(X;)).
Moreover, since | K f| = [[f(2)| < ||fll, Vf € Hk, by the principle of
uniform boundedness there exists M < oo such that |K}|| < M for all z.
Therefore, || K (z,z)|| = ||K*||> < M? for all .

Conversely, assume that the function x — || K (z, x)|| is bounded and K,y €
Co(X;Y). Given f € Hg, we have

LF @) < 1F 1 1 () |72 < M|F e -

In particular, convergence in Hy implies uniform convergence, so that the
closure (in Hyg) of the linear span of {K,y |z € X,y € Y} is contained in
Co(X;Y), ice. Hix CCo(X; ).

The continuity of the inclusion of Hy in Co(X;)) follows from || f||, <
M ([ fll4,.- Finally Hy is separable by Corollary 5.2 of [€]. O

If Hk is defined by means of a feature map -, the above characterization
can be expressed in terms of v, as shown by the following result.

Corollary 1. With the notations of Proposition [l the following conditions
are equivalent.

(a) The kernel K is Mercer [resp. Co|.

(b) There is a total set S in H such that W(S) C C(X;Y) [resp. W(S) C

Co(X; V)] and the function x — ||V || is locally bounded [resp. bounded|.

Proof. We give the proof only in the case of a Cy-kernel, the other case being
simpler. Suppose hence (a) holds true, i.e. Hx C Cp, then W(S) C ran W =
Hi C Co(X;Y) for all subset S of H. Moreover, ||v,|° = || K (z,z)|| < M by
item (ii) of Proposition 21 Conversely, if condition (b) holds, we have that
forall z € X and u € H

* * 1 1
[(Wu) ()| = K (Wu)|| < KWl < K@ 2) )2 fully, < M2 flully,

where ||IW]| < 1 being W a partial isometry. Then W maps H into the space
of bounded functions and W is continuous from H onto Hx endowed with
the uniform norm. Since W(S) C Cy(X;)Y) and Co(X;Y) is complete, then
Hr C Co(X;Y). O



2.4 Mercer theorem

For a Mercer kernel K, there is a canonical feature map, based on Mercer
theorem, which relates the spectral properties of the integral operator with
kernel K, and the structure of the corresponding reproducing kernel Hilbert
space. This result will be also used in the examples.

To state this result for vector valued reproducing kernels, we need some
preliminary facts. First of all, if K is a Mercer kernel and g is a probability
measure on X, the space Hy is a subspace of L?(X,u;Y), provided that
| K (x,z)|| is bounded on the support of u. This last condition is always
satisfied if K is a Cp-kernel or if u has compact support. If Hy is a subspace
of L?(X, u; Y), we denote the canonical inclusion by

i, Hi — L*(X, 15 )).

Next lemma states some properties of 7, and its proof is a consequence of
Propositions 3.3, 4.4 and 4.8 of [6].

Proposition 3. Let K be a Mercer kernel and i a probability measure such
that K is bounded on the support of j. The inclusion i, is a bounded operator,
its adjoint 7}, : L*(X, 13 ¥) — Hyc is given by

@ﬁw:AK@W®wm

where the integral converges in norm, and the composition i,i;, = L, s the
integral operator on L*(X, p; V) with kernel K

L)) = [ K f o)
In particular, if K(x,z) is a compact operator for all x € X, then Lk is a

compact operator.

The fact that Ly is a compact operator implies that there is a family
(fi)ier of eigenvectors in C(X; Y) and a family (o;);cr of eigenvalues in |0, oo
such that (f;);e; is an orthonormal basis of ker Lul =ran L, and

Lufi = 0;fi (6)

With this notation we are ready to state Mercer Theorem for vector valued
kernels. Its proof is consequence of Proposition 6.1 and Theorem 6.3 of [6].



Proposition 4. Let i be a probability measure with supp u = X. Suppose
K is a Mercer kernel such that sup,.x ||K(z,z)|| < oo, and K(z,x) is a
compact operator Yx € X. With the notation of (8), we have that

HK_{fec(Xy)mkerLHZ‘ff) 1 < o0} (7)
Zazfz ) @ fil ) (9)

where the last series converges in the strong operator topology of L()).

Equations () and (8)) imply that (/0;f;)icr is an orthonormal basis in
Hr. In particular the vectors (/o f; are {y-linearly independent in F(X;)),
namely, if (¢;);es is a family such that Y, ; |¢;|* < oo and Y, ; ¢i\/0; fi(x) =
0 for all z € X, then ¢; =0 for all 7 € I.

As said at the beginning of Section 2.4 Proposition [ gives a feature
operator, which is often used in learning theory.

Example 1. With the assumptions and notations of Proposition [{], the re-
producing kernel Hilbert space Hy s unitarily equivalent to ker Lul =ran L,
by means of the feature operator

=S VER@) )y = (LEf)(@),  felX(X,mY).  (10)

iel
Proof. Given x € X, define
Yo V= DX, 1Y) vy =Y Voily fix)) fi
iel

which is well defined since (f;);er is orthonormal family of continuous func-
tions and () ensures that >, ; 0i] (y, fi(2)) |* < oo. Using (@) again, one
checks that iy = K(x,t). The fact that feature operator is given by (I0)
is clear by definition of 7,. Since ker W = ker L,, W is a unitary operator
from ker LML onto Hg. O

2.5 Trivial examples

We give two examples of trivial vector valued kernels.
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Example 2. Let B € L(Y) be a positive operator and define K(x,t) = B for
all x,t € X, then K s a Y-reproducing kernel, Hx is unitarily equivalent to
ker B+ =ran B by means of the feature operator

(Wy)(x):B%y r € X, y € ker B,

The kernel K is of Mercer type and it is a Co-kernel if and only if X is
compact.

Proof. Apply Proposition [ with H = ker B* and v, = Bz. Since B is
injective on H, then W is unitary. The claims about the continuity are
clear. 0

Example 3. Let f : X — Y, f # 0. Define K(z,t) = f(z) ® f(t), then
K is a reproducing kernel, Hy s unitarily equivalent to C by means of the
feature operator

(We)(z) = cf (x) reX, ceC.

In particular K is Mercer [resp.Co| if and only if f € C(X;Y) [resp. [ €
Co(X; y)] .

Proof. Apply Proposition [[] with H = C and v,y = (y, f(x)). Since f # 0,
W is injective. The characterization about Mercer and Cy is trivial. U

3 Operations with kernels

In this section we characterize reproducing kernel Hilbert spaces whose kernel
is defined by algebraic operations, like sum, product and composition. Most
of the results are well known for scalar kernels, whereas for vector valued ker-
nels they are consequences of the theory developed in [27] in a more general
context. We provide a direct and simple proof of these results, based on the
use of suitable feature maps. In some cases, our approach can be of interest
also in the scalar case, like, for example, in proving Schur lemma about the
product of kernels.

As an application, we present a large supply of examples of vector valued re-
producing kernels and, for most of them, we realize the corresponding RKHS
by elegant and simple structures. This characterization will be used to an-
alyze some learning algorithm, like regularized least-squares, in the vector
valued setting.
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3.1 Sum of kernels

The following result extends to vector valued kernels the relation between
sum of kernels and sum of the corresponding reproducing kernel Hilbert
spaces.

Proposition 5. Denote by I a countable set and let (K%);cr be a family of
Y-reproducing kernels such that

Z<Ki(x,m)y,y><oo Yy €Y and Vr € X.

iel

Given x,t € X the series Y ,.; K'(x,t) converges to a bounded operator
K(x,t) in the strong operator topology, and the map K : X x X — L())
defined by
K(x,t)y = ZKZ(x, t)y
iel
15 a Y-reproducing kernel. The corresponding space Hy is embedded in
D.c; Hii by means of the feature operator

W(f) (@)= filz)  where f = ®icsf;
el

where the sum converges in norm.
Moreover, if each K* is a Mercer kernel [resp. Co-kernel] and x — >
is locally bounded [resp. bounded|, then K is Mercer [resp. Cpl.

| Kz, )

iet |

Proof. We apply Proposition[Il Letting H = @,.; Hi, we regard each H:
as a closed subspace of H so that any two of them are orthogonal. Given
z € X, we define the bounded operator v, : ¥ — H by 7, = >_..; K%, where
the series converges in the strong operator topology since, given y € ),

oKl = > (K (@, 2)y,y) < o0

el i€l

by assumption, see [7]. Given i € I and f; € Hg:, then

(vafisyy = (fis Koy) oo = (fil2), )

by reproducing property (B]), so that 7% f; = fi(x). Since 7 is continuous, for
any [ = @ierfi,

Wh)=vf =Y vfi=> filz)

el el
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where the series converges in norm.

Finally, K (z,t)y = vy = > ic;(0)i(2) = 3., K'(7, 1)y, thatis K(z,t) =
> icr K'(x,t) in the strong operator topology.
The second part is a consequence of Corollary Ml with S = J,.; Hx:. O

As an application, we have the following example.

Example 4. Let (f;)e; a countable family of functions f; : X — Y such that
Soier | (fi(@),y) | is finite for all z € X andy € Y. Define K : X x X —

L(Y) as
=Y filz) @ fi(t)

el

Then, the sum converges in the strong operator topology, K is a reproducing
kernel and

Hie = {f € FOXGY) [ fle) =) eifi(x), ) e <00} (11)

el el

In particular (f;)ier is a normalized tight frame in Hy. It is an orthonormal
basis if and only if (f;)icr is {a-linearly independent in F(X;)).

Proof. Apply Proposition B, with K'(z,t) = f;(z) ® f;(t), observing that
Hyi = C by Example B so that ®;c;Hk, =~ ¢5. The feature operator is
explicitly given by

Wi(e)(z) = Zcifi(a:) where ¢ = (¢;)ier, Z i < oo,
i€l icl

so that (III) is clear. If (e;);es is the canonical orthonormal basis of /5, then
We; = f; and, for any f € Hg,

1£1% = W £1Z, = Z| (W*f e, | = Z| s ) 17,

i.e. (fi)ier is a normalized tight frame in Hy. Clearly, it is an orthonormal
basis if and only if W is unitary, i.e. W is injective. This is precisely the
condition that (f;);es is f2-linearly independent in F(X; ). O

Proposition [ shows that any RKHS with a bounded compact Mercer
kernel can be realized as in the above example, where the functions f; are the
cigenfunctions (with || f;||3 = ;) of the integral operator L, with eigenvalues
o; > 0, and p is any probability measure with supp p = X, see ().
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3.2 Composition with maps

We now describe the reproducing kernel Hilbert spaces whose kernel is defined
in terms of a mother kernel and suitable maps acting either on the input space
X or on the output space Y. The following result characterizes the action of
a bounded operator on ).

Proposition 6. Let K be a Y-reproducing kernel. Let Y' be another Hilbert
space and w : Y — Y’ be a bounded operator. Define

Ky: X xX — L)) Ky(x,t) = wK(x, t)w*,
then Ky, is a Y reproducing kernel and H,, is embedded in Hy by means of
W:Hgk — Hk,, Wf)(z)=wf(z) z e X.

If w is injective, Hg,, is unitarily equivalent to Hy. Moreover, if K is Mercer
[resp. Co|, then K, is Mercer [resp. Cp).

Proof. Let v, : Y — Hg, 7. = K,w* and apply Proposition [ with H = Hx.
The feature operator from Hy onto Hp, is explicitly given by (W f)(x) =
vif = wf(z). If w is injective, then W is unitary. The second claim is
evident. O

We now study the action of an arbitrary map on X.

Proposition 7. Let K be a Y-reproducing kernel on X. Let T be another
locally compact second countable topological space, and ¥ : T — X. Define

K\I! T'xT — [,(y) K\I/(tl,tg) = K(\I](tl), \I](tg)) tl,tg eT.

Then Ky is a Y-reproducing kernel on T', the space Hy, is unitarily equiv-
alent to

span {K,y | v €ran U} = {f € Hg | f(x) =0 Vo € ran U}*
by means of the feature operator
W:Hk — Hg, W) =FU({E) feHk teTl

If K is a Mercer kernel and VU is continuous, then Ky is Mercer. If K is a
Co-kernel and ¥ is continuous and proper, then Ky is Cy.

Proof. Apply Proposition [l with H = Hy and, for any t € T', v, = Ky,
observing that ker W = {f € Hg | f(x) =0 Vz € ran U}.
The claims about Mercer and Cy-kernels are clear. O
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In the above proposition observe that ker W+ can be identified with the
quotient space Hy / ker W, so that one has also the natural identification

HKq, =~ {f|ran\11 | f € HK} (12)

where, the r.h.s. is endowed with the norm

Hf|ran \PH - lnf{HgHK | g c Hi, Gran v = f|ran \I/}

As a consequence, we describe the relation between a kernel and its re-
striction to a subset.

Corollary 2. Let X, be a subset of X. Let Kx, be the restriction of K to
XO X X(), then

Hiy, ={/fix, * f€Hx}

If K is Mercer and Xy is locally closed, then Kx, is Mercer. If K is Cy and
Xy 1s closed, then Kx, is Cp.

Proof. Apply Proposition [ and identification (I2), with ¥ the canonical
inclusion of X, in X. O

We end this part by describing the reproducing kernel Hilbert space as-
sociated with the kernel proposed in [5].

Proposition 8. Let k be a scalar reproducing kernel on X. Let T be an-
other locally compact second countable topological space. Let Wy, ..., W¥,, be
functions from T to X and define K(t1,t3) as the m X m-matriz

K(tl,tg)ij = K(‘I’i(tl), \I]](tg)) 2,] = 1, oo,y tl,tg € T

Then K is a C™-reproducing kernel on T', the space Hx is embedded in H,
by means of the feature operator

W: H, — Hg (W(p)(t)); = (V1)) peH,, tel.
If one of Wy, ..., U, is surjective, then W is unitary.

Proof. Apply Proposition [l with H = H,. and ~; : C"™ — H,,
’yt(yb s aym) = Zyiﬁ;‘l’i(t)’
i=1

so that v/ (¢); = @(¥;(t)).

If W, is surjective for some index i = 1,...,m, the condition p(¥;(t)) =0
for all ¢ € T implies that p(z) =0 for all x € X, that is, ¢ = 0. Hence W is
injective and, hence, unitary. O
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3.3 Product of kernels

The following proposition extends Schur lemma about products of reproduc-
ing kernels to the vector valued case.

Proposition 9. Let K be a YV-kernel and k a scalar kernel. Define
(kK)(x,t) = k(x,t)K(x,t) z,te X,

then kK s a Y-reproducing kernel and H.x is embedded into H, @ Hx by
means of the feature operator

W(p® f)(z) = (@) f(x) ¢ €Hx, feHg

If both k and K are Mercer kernels, so is kK, whereas if

ke € Co(X) and Kyv € C(X;))
sup{r(z, ), | K (z, )|} < oo and or (13)
veX Ky € C(X) and Kyv € Co(X;))

then K is a Cy kernel.

Proof. Let H = H,. ® Hg. Since k is a scalar kernel, k, € H,. Define
Ye ¥ — H by means of 1,y = k, ® K.y, then vi(¢o ® f) = o(x)f(z). First
claim is a consequence of Proposition [I]

If both x and K are Mercer kernels, clearly kK is Mercer.

To prove that if (I3) hold then K is Cy, we apply Corollary [ with S =
{e® f| ¢ € Hy f€EHg}, and observe that

el < llkall, 1]l < €,

by assumption. O

Based on the above results, we characterize the RKHS whose kernel is
given in [5].

Example 5. Let k be a scalar reproducing kernel and B a positive bounded
operator on' Y. Define K : X x X — L()) as

K(z,t) = k(x,t)B r,te X

(i) The map K is a Y-reproducing kernel and Hy is unitarily equivalent
to H, ® ker B by means of the unitary operator

W (e @ y)(x) = p(x)B7y.

16



(i) If k is Mercer [resp. Co|, then K is Mercer [resp. Cyl, too.

(iii) If there is an orthonormal basis (y;)icr of ker B+ such that By; = o,y
(so that o; > 0 for alli € I), then Hy is unitarily equivalent to ®;c;H,
by means of the unitary operator

W(@Ze[@z Z \/0_'1902 yz ; (14)

iel
where the series converges in norm.

Proof. First two items are a consequence of Proposition @ and Example 2]
We prove item (iii) in two steps. Apply first Proposition [l with w : Y — £5,
(wy); = (y,v:), so that Hg, is embedded in Hg, by means of the feature
operator Wy, (f) = wo f for all f € Hg. The corresponding fo-kernel is
Ky (x,t) = k(z,t)wBw*. By definition of w, the kernel K, is diagonal with
respect to (e;)ier, the canonical basis of /5, namely

t)=> oz, t)e; @ =y K'(x,t),
el i€l

where the series converges in the strong operator topology.

Now observe that, for each i € I, ker(o;e; @ &;)+ = Ce;, so that for item (i)
of this example, the space Hy: is unitarily equivalent to H, ® Ce; ~ H,,
through the feature operator

W't = Hie, WiHp)(x) = o(2)V/aie;

Applying Proposition [l to the family (K*);cr, we obtain a unitary operator

W @H,{ — HKw s @7,907, ngz \/;’Lew
icl
(the operator W is unitary since o; > 0 for all i € I, so that W is injective).
Equation (I4)) is finally obtained letting W = WiW. O

If in Example [, ) is a RKHS of scalar functions over some set X', then
there is a particular choice for the operator B, suggested by Example [

Example 6. Let X and X' be two locally compact second countable topo-
logical spaces. Let k : X x X — C and v' : X' x X' — C be two scalar
reproducing kernels on X and X', respectively.
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(i) If I' denotes the identity operator on H,:, define
K:XxX— L(H,) K(z,t) = k(z, )1,

then K is a H.-reproducing kernel on X and the corresponding RKHS
Hy s unitarily equivalent to H, @ H,s by means of the feature operator

W:H,®Hs — Hg, W(p1 ® @2)(z) = 1(x)p2 -
(ii) Define k x K"+ (X x X') x (X x X') = C as
(k X &) (z,2";t,t") = w(x, )& (2, 1),

then kX k' is a scalar kernel on X x X' and H . is unitarily equivalent
to Hx by means of the feature operator

W(f)(x,2') = [f(2)] (') = (f(2),K,), [ €M

Proof. The first part follows from Example Bl with ) = H,» and B = I,
which is injective. The second part is a consequence of Proposition [[l applied
to

v: XX X' — L(C;Hg) 2 Hy, (z,2")— W(k, @ KL,),
taking into account the injectivity of W and the equalities
(W (01 ® ©2), Ywar)) =01 © P2, Fiw @ Klp) = p1() (P2, K)o
=(W (01 ® 02)(2). K0 = W(W (01 ® 02)) (2, 2).
O

By using Propositiondlon the space X', the above example can be realized
in an alternative way.

Example 7. Let X and X' be two locally compact second countable topo-
logical spaces. Let k : X x X — C and ' : X' x X' — C be two scalar
Co-reproducing kernels on X and X', respectively. Let i’ be a probability mea-
sure on X" with supp ' = X' and L, be the integral operator on L*(X', i)
with kernel k'. Define

K:XxX—LLAX' W)  K(,t)=rk(z,t)L,,

then the kernel K is a L*(X', i) -reproducing kernel and the space Hp is
unitarily equivalent to H,, ® H, by means of

W(f@g)(x) = f(@)iw(g) [ €Hu g€ He,

where i, is the inclusion of H, in L*(X', p). In particular, K isa Co-kernel.
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Proof. Apply Proposition [l with K = xI’, as in the previous example, and
w = 14,s, which is injective. Clearly K,, = K, so that Hz is unitarily equiva-
lent to H, ;.. The thesis follows immediately from Example [Gl O

The above example shows that Hyx and Hj are the same RKHS, where
the elements of Hy are regarded as functions from X into H,/, whereas the
elements of H are regarded as functions from X into L*(X', i/').

3.4 Application to learning theory

We end this section considering an application of some of the above examples
to vector valued regression problems. In learning theory, a popular algorithm
is the minimization on a RKHS H g of the empirical error with a penalty term
proportional to the square of the norm [I3], namely

(1 2 2
f* = argmin | — vt — FO| + M f . 15
remi n;H @[3 + A1l (15)
Here {(z%,y%), ..., (2", y™)} is the training set of n input-output pairs (¢, y*) €
X xY and A > 0 is the regularization parameter. If the reproducing kernel
K is as in Example Al then it can be checked that

frx) = eilx)y

iel

where each @7 is given by

1 A2
p; = argmin (ﬁ E ny — 90(£E£)|2 + p ||90||n) )
=1 ‘

@EH&

and yf = (y*, i)

In many applications ) = C™ so that B is a m X m positive semi-definite
matrix. The above observation reduces the problem of computing the mini-
mizer of (1)) to |I| scalar problems, where the cardinality |/| is the rank of
the matrix B.

With the choice of K as in Proposition [§ let f* be the minimizer given
by ([H), where the n-examples in the training set are the pairs (#*,y%) €
T x R™. By using the fact that W is a partial surjective isometry, one can
check that

19



where ©* is given by

o8 —argmm< DIyt = e@) + Aol )
e

QOGHK —1 i=1

where yf € R are the components of the output y* € R™ and x¢ = W, (t) € X,

With this choice the problem (I3]) is reduced to a minimization problem on
the scalar RKHS H,..

4 Universal kernels: main results

In this section we address the problem of defining and characterizing the
universality of a kernel K. As pointed out in the introduction, in learning
theory a necessary condition in order to have universally consistent algo-
rithms is the assumption that the reproducing kernel Hilbert space H is
dense in L?(X, u; ) for any probability measure y. From this point of view
next definition is very natural.

Definition 2. Let K : X x X — L()) be a reproducing kernel.

(i) A Co-kernel K is called universal if Hy is dense in L*(X,u;Y) for
each probability measure p.

(ii) A Mercer kernel K is called compact-universal if Hy is dense in
L3(X, 1; V) for each probability measure yu with compact support.

We briefly comment on the above definitions. In item (i) the assumption
that the kernel is Cy ensures both that Hy is a subspace of L*(X,u;))
and that universality is equivalent to the density of Hg is Co(X;)) (see
Theorem [). In item (ii), since p has compact support, it is enough to
assume that K is a Mercer kernel in order to have Hy C L*(X,u;Y). This
last property turns out to be equivalent to the definition of universality given
in [5].

Clearly a universal kernel is also compact-universal. Conversely, a Cy-kernel
can be compact-universal but not universal, as shown by Examples [§ and [L1l

Notice that in Definition Bl if we replace L*(X,u;Y) with LP(X, u;))
for an arbitrary 1 < p < oo, we have in principle a different notion of
universality. Nevertheless Theorem [ clarifies that there is no difference. We
state the results for p = 2, since it is the natural choice in learning theory.

The following corollary shows that universality is preserved by restriction
to a subset.
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Corollary 3. Let X, be a subset of X.
(i) If Xo is closed and K is universal, then Kx, is universal.

(i) If Xg is locally closed and K is compact-universal, then Kx, is compact-
universal.

Proof. We only prove (i). Since Xj is closed, Corollary 2] implies that Kx,
is a Co-kernel, and a function f belongs to Hy, if and only if there exists
g € Hg such that f = g Xo* Given a probability measure p on Xy, let v be
the probability measure on X, v(E) = u(E N X;) for any Borel subset E of
X. By universality of K, H is dense in L*(X,v,Y) ~ L*(Xy, 1, )), where
the equivalence is given by the restriction from X to Xy, so that Hiy, 18
dense in L*(Xy, 1, Y). O

The converse is clearly not true. Notice that the compact-universal ker-
nels are precisely the Mercer kernels such that Kx, is universal for any com-
pact subset X, of X.

In the next subsections we discuss separately the two notions of univer-
sality and then we make a comparison between them.

4.1 Universality and Cy-kernels

In this section we characterize the universal Cyo-kernels. First result shows
that the density of Hy in L*(X, u;Y) for any probability measure y is equiv-
alent to the density in Co(X;)) and that one can replace L?(X, u; ) with
LP(X, 1)), 1 <p < o0.

Theorem 1. Suppose K is a Cy-kernel. The following facts are equivalent.
(a) The kernel K is universal.
(b) The space Hk is dense in Co(X;Y).

(¢) There is 1 < p < oo such that Hy is dense in LP(X,u;Y) for all
probability measures p on X.

Proof. Clearly (a) implies (c). Since X is locally compact and second count-
able, Co(X;)Y) is dense in L*(X, u; V) where the inclusion is continuous, so
that (b) implies (a).

We show that (c) implies (b). Suppose hence that Hy is not dense in
Co(X;Y). Then, there exists T € Co(X;Y)*, T # 0 such that T(f) = 0
for all f € Hg. By Theorem [7], there is a probability measure p on X and
a function h € L*°(X,pu;Y) such that T(f) = [, (f(z), h(z)) du(x). Since
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T #0, then h # 0.
Since p is a probability measure, h is a non-null element in L?/®=D (X, u;: V) =
LP(X, pu; Y)* (where we set 1/0 = 0o) such that

/X (@), h@)) dp(x) =0 Vf € Hy.

It follows that Hy is not dense in LP(X, u;)). O

As a consequence of the previous theorem, we have the following nice
corollary.

Corollary 4. Let K be a Cy- kernel. Given 1 < p < g < oo, the space Hy is
dense in LP(X, ;YY) for all probability measures p if and only if it is dense
in LY(X, ;) for all probability measures .

The previous result is not trivial. Clearly, if ¢ > p, the space LY(X, u; ))
is always a dense subspace of LP(X, pu;)) and the inclusion is continuous.
Hence, if a RKHS H is dense in LY(X, u;)), then Hy is always dense in
LP(X, p; ). However, in general LP(X, 1; Y) is not contained in L9(X, u; Y),
so that, if Hy is dense LP(X, u; ), the density of Hy in L(X, u; V) has to
be proved. Corollary 4] shows this result under the assumption that K is C,.

Now, we give a characterisation of universality of K in terms of the injec-
tivity property of the integral operators L,,, for ;1 varying over the probability
measures on X.

Theorem 2. Suppose K is a Cyo-kernel. Then the following facts are equiv-
alent.

(a) The kernel K is universal.

(b) The operator i, : L*(X, ;) — Hy is an injective operator for all
probability measures p on X.

(c) The integral operator L, : L*(X,u;Y) — L*(X, ;) is injective for
all probability measures  on X.

The proof is an immediate consequence of Theorem [I] and the next propo-
sition.

Proposition 10. Let K be a Mercer kernel and p a fixed probability measure
on X such that K is bounded on the support of p. The following facts are
equivalent.

(a) The space Hy is dense in L*(X, 1;)).
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(b) The operator i, is injective.

(c) The integral operator L, is injective.

Proof. The space Hy is dense in L*(X, u; Y) if and only if the range of i,, is
dense in L?*(X,u;Y). This last condition is equivalent to the injectivity of
i¥,, that is, (a) is equivalent to (b). Since L, = i,7; and ker L,, = ker 7}, then
(b) and (c) are equivalent. O

4.2 Compact-universality

In this section, we characterize compact-universality of Mercer kernels and
we show that compact-universality is precisely what is called universality in
5.

Next theorem characterizes compact-universality.

Theorem 3. Suppose K is a Mercer kernel. The following facts are equiva-
lent.

(a) The kernel K is compact-universal.
(b) The space Hk is dense in C(X;Y) endowed with compact-open topology.

(¢) There is 1 < p < oo such that Hy is dense in LP(X,u;Y) for all
compactly supported probability measures.

Proof. Clearly (a) implies (c). We prove that (b) implies (a). Indeed, fixed
a probability measure 1 with compact support Z, the fact that Hy is dense
in C(X;)) implies that Hg|, := {f|, | f € Hk} is dense in C(Z;Y), but
C(Z;Y) is clearly dense in L*(Z,u; V) ~ L*(X, u; V) with continuous injec-
tion. Hence Hy is dense in L*(X, pu; Y). It only remains to prove that (c)
implies (b). For this, it is enough to prove that Hg/|, is dense in C(Z;))
with the uniform norm, for all compact subset Z of X. But this is a simple
consequence of Theorem [l since Hg/|, is clearly dense in LP(Z, j1;)) for all
probability measure p on Z, and C(Z;Y) = Co(Z;Y). O

The analog of theorem [2] also holds.

Theorem 4. Suppose K is a Mercer kernel. Then the following facts are
equivalent.

(a) The kernel K is compact-universal.

(b) The operator iy, : Hg — L*(X,;Y) is an injective operator for all
compactly supported probability measures p on X.
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(c) The integral operator L, : L*(X, ;) — L*(X, ;) is injective for
all probability measures p on X with compact support.

The proof is a simple consequence of Proposition [I0l

Clearly universality of a Cy-kernel K implies compact-universality. The
converse is not true as shown by the following example, see also Example [T1]
The reason of this phenomenon is the fact that Co(X;)) endowed with the
compact-open topology is not continuously embedded in LP(X, y; ).

Example 8. Let X = Z_, and let £? be the Hilbert space of square summable
sequences. Then, ¢? is a RKHS of scalar functions on X with reproducing
kernel K (i,j) = 0;;, where 0, ; is the Kronecker delta. We fix the following

sequence { fi}rez, in (2
Je(d) = 0jk + €djpt1s

and we let
Hy = *—clspan {fy | k € Z,} (16)

(2—cl denotes the closure in ?). Hy is also a RKHS of scalar functions
on X, whose reproducing kernel we denote by K. Since (2 C ¢ (= the
sequences going to 0 at infinity), K is a Cy-reproducing kernel.

For all n € Zy, let Z, = {1,2...n}. Z, is compact in X, and every
compact set Z C X is contained in some Z,. Clearly,

C(Zn) = span {(fi), | k <n},

hence Hy is dense in C(X) with the topology of uniform convergence on
compact subsets.

Let p be the probability measure on X such that u({j}) = (e — 1)e™7.
We claim that H is not dense in L*(X, u). In fact, let f € L?(X, i) be the
function f(j) = (—=1)?. We have (fis F)r2(x,y = 0 for all k. By (I0) and
continuity of the inclusion ¢* — L?(X, i), we see that f is in the orthogonal
complement of H in L?(X, ). The claim then follows.

A universal kernel is strictly positive definite, but the converse in general
fails, as shown by the following corollary and example.

Corollary 5. Suppose K is a compact-universal kernel. Then K is strictly
positive definite, i.e. for all finite subsets {z1,xs...xn} of X such that x; #
xj if i # j, the condition

N
Z(K($i>$j)yj,yi>=0 (y; €Y, i=1...N)

1,j=1

implies y; =0 foralli=1,...,N.

24



Proof. Assume Z?’;ZI (K (4, 2;)y;,y;) = 0 for some finite subset {z1,25...2x} €
X, z; #x;if i # 7, and {y1,92...2n} in Y. Taking

1 & Y
RS SRS
i=1 =1

we obtain a probability measure 1 on X with compact support and a function
¢ € L*(X, pu;Y) such that

N

0= 3" (K (s ;). ) = N? / (K (2, 9)0(y), 0(2)) duly) du(z)

ij=1 XxX

= [ (L)(@). @) dule) = N (Luspr ).
Since L, is positive and injective by Theorem @ we have ¢(z;) = 0 for all
i=1,...,N. Since x; # z; if i # j, theny; =0foralle=1,..., N. O

The converse of the above corollary fails to be true, as shown by the
following example.

Example 9. Let K : R x R — C be the kernel

L in2m(z —t
K (l’, t):/ 627rz(x—t)pdp _ S Tr(f ) )
. m(z —t)

The map K 1is a scalar Cy-kernel, which is strictly positive definite, but not
universal.

Proof. We show that it is strictly positive definite. Indeed, let x1,... 2y € X
such that z; # z; if i # j, ¢1,...,cy € C and suppose

N . N
0= Z cici K (s, 933'):/ | Z c;e2miwip
-1 =

1,j=1

2dp

2 2mix;p

Since p — | >, ¢;e*™P|? is continuous, it follows that | >_. c;e 2 =0
for all p € [—1,1]. Observing that the functions f;(t) = e*™** are linearly
independent on [—1, 1] since x; # x;, it follows that ¢; = 0 for all j. Clearly
K is a Cy-kernel, but it is not universal (see Example [TT). O

In the next remark we show that compact-universality is exactly what is
called universality in [5].

25



Remark 1. In [5], a Mercer kernel K is said to be universal if, for each
compact set Z C X

C(2;Y) = ||, ~clspan {K (nx)viz |z € Z ve VY,  (17)

where ||-|| , —cl denotes the closure in C(Z;)) with the uniform norm topol-
ogy. This is equivalent to require that H is dense C(X; )) with the compact-
open topology, that is, by Theorem [ that K is compact-universal. Indeed,
by definition of the compact-open topology, Hx is dense in C(X;)) if and
only if

C(2:Y) = |-l —cl Hacl, (18)

for all compact Z C X.

Clearly (IT) implies (I8]). Suppose on the other hand that (Ig]) holds true.
Denote with K the restriction of K to Z x Z. Since convergence in Hx
implies uniform convergence we have

||| ; —clspan {K(H@")U\Z lzveZ ve y} 2 Hi

On the other hand, Hz = Hk|, as a linear space of functions (see Corol-

lary 2)). Hence (I8) implies (I7).

5 Translation invariant kernels and univer-
sality

In this section we assume that X is a locally compact second countable
topological group with identity e and we study the reproducing kernels that
are translation invariant, namely

K(zx,zt) = K(z,t) for all z,t, 2z € X. (19)

In particular we characterize all the translation invariant kernels in terms
of a unitary representation of X acting on an arbitrary Hilbert space H
and an operator A : H — Y. If X is an abelian group, we give a more
explicit characterization in Theorem Bl and Theorem [I3] provides a sufficient
condition ensuring that the corresponding reproducing kernel Hilbert space
is universal. This condition is also necessary if X is compact or Y = C. For
scalar kernels on R? our result has been already proved in [22].

For a representation m of X on a vector space V' we mean a group ho-
momorphism from X to the automorphisms of V. In particular, if V is a
Hilbert space, 7 is unitary if it takes values in the group of unitary operators
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on V. In this framewok the representation is called continuous if 7 is strongly
continuous (see [16]).

We denote by A the left regular representation of X acting on F(X;)),
namely

AS)(t) = fla7't)  taxeX, feF(X;D).
We recall that a function I' : X — L()) is of completely positive type if

N

> (Tl wi)ys0:) 2 0 (20)

ij=1
for all finite sequences {x;}i—1. ny in X and {y;};—1. n in V.

The following facts are easy to prove.

Proposition 11. Let K : X x X — L(Y) be a reproducing kernel. The
following conditions are equivalent.

(a) K is a translation invariant reproducing kernel.
(b) There is a function K, : X — L(Y) of completely positive type such
that K(x,t) = K (t ).

If one the above conditions is satisfied, then the representation A\ leaves in-
variant Hy, its action on Hy s unitary and

K(x,t) = K -1 K, r,teX (21)
K (2, 2)[| = ([ Ke(e)] reX (22)

The notation K, for the function of completely positive type associated
with the reproducing kernel K is consistent with the definition given by ()
since

(Key)(z) = Ke(2)y yel, veX.

(
Proof of Proposition[11. Assume (a). Given z,t € X, (1) and (I9) give
K (t7'z) = Kt 'z, e) = K(z,t).

Since K is a reproducing kernel, K, is of completely positive type, so that
(b) holds true.
Assume (b). Clearly K is a translation invariant reproducing kernel, so that
(a) holds true.

Suppose now that K is a translation invariant reproducing kernel. Ob-
serve that, given t € X and y € ),

AeKey)(2) = (Ky) (a7 '2) = K(z 7'z, t)y = K(z, at)y = (Kay)(2) 2,2 € X,
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that is, \,K; = K ;. Moreover

(A Kyt )\thzy2>K = (Ket, 41, th2y2>K = (K (wty, 2t1)y1, ya)
- <K(t27 tl)yh y2> - <Kt1y17 Kt2y2>K .
This means that A leaves the set {K,y | z € X,y € Y} invariant and its ac-
tion is unitary. First two claims now follow recalling that { K,y | v € X,y € YV}
is total in Hg. To prove (2I]) observe that
K(z,t) = K'K, = KA K, = KA\ 1, K.,

for all z,t € X. O

Notice that, if K is a translation invariant kernel, (22) implies that the

elements of Hx are bounded functions. The following lemma characterizes
the translation invariant kernels that are Mercer or Cy.

Lemma 1. Let K. : X — Y be a function of completely positive type and
let K be the corresponding translation invariant reproducing kernel. The
following conditions are equivalent.

(a) The map K is a Mercer kernel.
(b) Forally €Y, K.(-)y € C(X;)).
(¢) The representation X is continuous on H.
Moreover, the map K is a Co-kernel if and only if K.(-)y € Co(X;Y) for all
yey.
Proof. The equivalence between (a) and (b) as well as the statement about
Co-kernel is a consequence of Proposition 2], observing that (K,y)(t) = K.(z~ )y
and (22)) holds.
Assume that K is a Mercer kernel. Since A is a unitary representation and
the set {Kw |t € X,y € Y} is total in Hg, it is enough to check that for
any t € X and y € Y the function = — A\, K,y is continuous at the identity.
Indeed, observe that
N Koy — Keyllze = 1 Kary — Koyl
= (K (at,xt) — K(t,xt) — K(xt,t) + K(t,t)) y,y),
= <(2Ke(€) - Ke(t_lx_lt) - Ke(t_lxt)) Y, y>
which is continuous at the identity by assumption on K.. Conversely, if A is
continuous, (2I) gives that

K. (x)y = K(z,e)y = K; -1 K.y,
so that K (-)y is continuous. O
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The following theorem characterizes the translation invariant reproducing
kernels.

Proposition 12. Let 7 be a unitary representation of X acting on a separable
Hilbert space H and A : ' H — Y a bounded operator. Define

W:H—-F(X;)), (Wo)(z) = Amp-1v. (23)

W is a unitary map from ker W+ onto the reproducing kernel Hilbert space
H e with translation invariant kernel

K(x,t) = Amp—1,A” z,te X. (24)

Moreover W intertwines the representations m and A. Finally W is unitary
if and only if the only m-invariant closed subspace of ker A is the null space.

Proof. Define v, : Y — H as 7, = m,A*, so that (Wv)(z) = yiv = Am,-1v.
The claim is now consequence of Proposition [II, up the last statement. The
fact that W intertwines 7 with A is trivial. Finally, by Proposition I W is
unitary if and only if is injective. By definition

ker W ={veH |mv € ker AVr € X},

Hence ker W is a closed subspace of ker A invariant with respect to 7. Con-
versely any m-invariant closed subspace of ker A is contained in ker W. [

Proposition [l and show that any translation invariant kernel is of
the form K(x,t) = Am,-1,A* for some unitary representation = acting on a
Hilbert space H and a bounded operator A : H — ). In particular, if 7 is
a continuous representation, then K is a Mercer kernel and for any Mercer
kernel 7 can be assumed to be continuous and H separable. Moreover, the
reproducing kernel Hilbert space Hg is embedded in H by the feature oper-
ator W defined by (23). Observe that if the representation 7 is irreducible
or if A is injective, then W is unitary.

If Y = C, the operator A is of the form Av = (v, w),, for some w € H, so
that (Ww)(z) = (v, m,w),,. This operator is well know in harmonic analysis
as wavelet operator [17].

Remark 2. Notice that any translation invariant kernel K is the sum of
translation invariant kernels associated with cyclic representations. Indeed,
let m be a unitary representation defining K by means of (24). Since any
unitary representation is the direct sum of a family of cyclic representations,
then H = ®;c;’H; where each H; is a closed m-invariant subspace and the
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action of m on H; is cyclic. Denote by P; the orthogonal projection on H,,
then
K(z,t) =Y APm, DA =Y K'(x,t),
iel icl

where the series converges in the strong operator topology and the reproduc-
ing kernels K* are K*(x,t) = A;w’_,, A} where 7' and A; are the restrictions
of m and A to H;, respectively. Proposition [ implies that Hx = > ;. H:.
For scalar kernels, we can always assume that m is cyclic itself. Indeed, the
wavelet operator is (Wwv)(x) = (v, myw),, for some w € H, so that the as-
sociated kernel K is determined only by the cyclic subrepresentation of m
containing w.

5.1 Abelian groups

In this section, we specialize the previous discussion to the case in which
X is an abelian group. With this assumption, we can give a more explicit
construction of translation invariant Mercer kernels, which is related to a
generalization of Bochner theorem for scalar functions of positive type, [2,[15].

We denote the product in X additively and the identity by 0, since the
main example is R%. We let X be the dual group of X and we denote by dx
the Haar measure on X.

Now, we briefly recall the definition of Fourier transform, see for example
[16]. If ¢ € L'(X,dx;)), its Fourier transform F(¢) : X — ) is given by

F@)0) = /X X@) d(a)de.

We denote by dy the Haar measure on X normalized so that F extends to
a unitary operator from L*(X,dz;)) onto LQ(XA, dx;Y). If pis a positive
measure on X and ¢ € LY (X, u; V), let F(pu): X — Y be given by

Flon)(x) = / X@e(z) du(z).

X

If p is a complex measurd] on X, we denote F(u) = F(h|u|) where |p] is the
total variation of y and h € L*(X, |u|) is the density of p with respect to |pu.
By general properties of Fourier transform, F(¢) and F(u) are bounded
continuous functions on X (actually, F(¢) € Co(X;Y)). Moreover, F(¢) =0
[respectively, F(u) = 0] if and only if ¢ = 0 in L' (X, dz;Y) [resp., u = 0].

4That is, a o-additive map u: B(X) — C.
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We recall that a positive operator valued measure (POVM) on X with
values in Y is a map @ : B(X) — L(Y) such that Q(Z) > 0 for all
Z € B(X), and

for every denumerable sequence of disjoint Borel sets {Z;}; where the sum
converges in the weak operator topology. A positive operator valued measure
Q is a projection valued measure if Q(ZA)2 =1forall Z € B(X) Iff:X—
C is a bounded measurable function, [ F(x)dQ(y) is the unique bounded
operator f(Q) defined by

(FQuv) = [ F0aQut0 wy €.

where @), is the complex measure on X given by Qy,y/(Z) = <Q(Z)y,y’ >

for all Borel subsets Z.

Next theorem shows that there is a one to one correspondence between
translation invariant Mercer kernels on X and positive operator valued mea-
sures on X . For scalar kernels this result is Bochner theorem [2]. For vector
valued kernels, it is proved in [14], [I5] under the weaker assumption that Kj
is a function of positive type, namely that

Z ciCj (Ko(x; — x5)y,y) >0 (25)

,j=1

for all finite sequences {x;}i=1 v in X, {¢;}izi. v in C and y € Y. The
fact that conditions ([20) and (25) are equivalent for abelian groups is a
consequence of [I0, Lemma 3.1]. In the following, assuming (20), we give a
proof simpler than the one provided in [14], 15].

Theorem 5. If Q : B(X) — L(Y) is a positive operator valued measure,
then
K(a,t) = [ x(t - 2dQ(0) (26)
b

is a translation invariant ) -Mercer kernel on X. Conversely, if K is a trans-
lation invariant Y-Mercer kernel on X, then there exists a unique positive
operator valued measure Q) such that (20) holds.

We say that @ in (26) is the positive operator valued measure associated
to the translation invariant Mercer kernel K.
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Proof of Theorem[. If Q : B(X) — L(Y) is a positive operator valued
measure, by Neumark dilation theorem [24] there exist a separable Hilbert
space H, a projection valued measure P : B(X' ) — L(H) and a bounded
operator A : ' H — ) such that

~ ~

Q(Z) = AP(2)A*  VZ e B(X). (27)

Let 7 be the continuous unitary representation of X acting on H given by

n(z) = /X A(@)dP(y), (28)

see [16]. Eq. (20) then becomes K (x,t) = Am_,A*, so that K is a translation
invariant Mercer kernel by Proposition [[2] and Lemma [Tl

Conversely, by Proposition [I2]and Lemma[I], every translation invariant Mer-
cer kernel is of the form K(z,t) = Am_,A* for some continuous unitary
representation m of X in a separable Hilbert space H and some bounded
operator A : H — ). By SNAG theorem [I0], there is then a projection
valued measure P : B(X) — L(H) such that 28) holds and (28) follows
defining the POVM @ as in (27]).

Finally, uniqueness of ) follows from

(Ko(a)y, y') = / N@AQy (x) = F(Qyy) ()

X
by injectivity of Fourier transform of measures on X. O

The next proposition is a useful tool to construct translation invariant
Mercer kernels.

Theorem 6. Let i be a measure on X and A L2(X, v;Y) — Y be a bounded
operator. For ally,y' € Y let

(K(z,t)y,y') = / x(t =) {(A"y) (x), (A"Y) (X)) do(x). (29)

X

Then K is a translation invariant Mercer kernel and the corresponding re-
producing kernel Hilbert space is embedded in L3*(X,0;Y) by means of the
feature operator W : L*(X,1;Y) — Hg

~

(WH@) = A where  f)=X@I0)  (30)
(Wha.) = [ X (Foo. (a0 ait.

Conversely, any translation invariant Mercer kernel is of the above form for
some positive measure U and bounded operator A : L*(X,0;Y) — .
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Proof. If i is a measure on X and A : L2 (X, v;Y) — Y is a bounded operator,
then

(Q2yw.y) = / (Ay) (0, (AY) (i) VZ € BIX), y,y' €Y

defines a positive operator valued measure Q) : B (X ) — L(Y), since Q(Z ) =
AP(Z)A* where P(Z) is the multiplication by the characteristic function of
Z. The kernel K given in (29) is then the translation invariant Mercer kernel
associated to @ by (26]). To prove ([B0), set

Yo : Y — DX, 5Y)  (ry) (x) = x(@)(Ay) (),
so that K(z,t) = v and

(r2d) = (Fo), = [ (0@ n0) @it
= [ @ {f00. (40 vt = (470

for all f e L2(X, ;).

Conversely, assume that K is a translation invariant Mercer kernel. We first
consider the case that ) is infinite-dimensional. Propositions [I1] and [I2] show
that K is of the form K(xz,t) = Am_,A* for some unitary continuous repre-
sentatijon 7 acting on a separable Hilbert space ‘H and a bounded operator
A:H— .

A basic result of commutative harmonic analysis (see [16]) ensures that, for
each n € N, := NU {oo}, there exist a complex separable Hilbert space ),
of dlmensmn n, and a measurable subset X, of X endowed with a positive
measure 0, such that the X,, are disjoint and cover X. Without loss of gen-
erality, we can assume that 0,(X,) < 27" and D (Xo) < 1. Moreover there
exists a unitary operator U : H — @ L*(X,, ’n, Y,) such that

For each n € N,, let J, : V, — Y be a fixed isometry, which always exists
since ) is infinite dimensional, and consider the Hilbert space L? (X 0 )),
where 7 = ) 7, which is a bounded measure by assumption on #,,. Define
the isometry V : H — L2(X, ;D) as

~

(Vu)(x) = Jn(Uv)(x)  x € Xa.

A simple calculation shows that

~

T, = VAV
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where (A, f)(x) = x(x)f(x) is the diagonal representation on L*(X,7;Y).
Now )
K(x,t) = Amy_, A" = AV* A,V A",

Redefining A = AV*, ([29) is a consequence of the explicit form of A,.
If Y is finite dimensional, let (7, B) be the pair associated to K as in
Proposition [[3 below. Eq. 29) follows defining A : L*(X,0,Y) — Y

(aiw)= [ (B0

(NI

700,y d(x).
]

If Yy =C™, K(x,t) can be regarded as a m x m-matrix and A is uniquely
defined by a family of functions fi, ..., f, € L2 (X v;Y) through A*e; = fi.
Hence, (29) becomes

K(t=ay = [ x(t=0) (500 A00) 000 ij =1 m. (31)

As an application, we give the following example that generalizes the one
given in [5].

Example 10. Let X = R?, regarded as vector abelian group, and Y = C™.

The dual group is isomorphic to R? by means of x,(x) = €*™P. Let i = dp
be the Lebesque measure on R? and

2 1 o2l
filp) = 9 )d/4 Ty v; €Y, 07> 0,

(27

then the translation invariant Mercer kernel given by (31) is

Kt — )y — / D). fip) dp

1 _op2lz—t]?
_ of+o%
et .

The example in [3] corresponds to the choice v; = v; and o; = o; for any
,7=1,....,m.

Theorems [ and [6] give two different characterizations of a translation
invariant kernel K, but the POVM @ defining K through (20) is always
unique, whereas there are many pairs (, A) defining the same K by (29).
These two descriptions are related observing that, given a pair (7, A), the
scalar bounded measure @), , has density ((A*y)(x), (A*y)(x)) with respect
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to © for any y,y’ € V. On the other hand, given the POVM @), let 7 be the
bounded positive measure defined by

7(Z) =27yl (D) VZEBX)  (32)

n

where {y, }nen is a dense sequence in Y. Clearly, given Z € B(X), ig(Z) =0
if and only if Q(Z ) = 0, and 7 is uniquely defined by @ up to an equivalence.
Moreover, by Neumark dilation theorem, see (27)), there exists an operator
Ao : L*(X,i0;Y) — Y such that the pair (0, Ag) gives the kernel K
associated with ().

We notice that in general it is not true that the POVM (@) has an operator
valued density. We recall that ) has operator density if there exists a map
B: X — L(Y) and a positive measure ¥ such that (B(-)y,y') € LY(X,D)
for all y,y' € Y and

/Z BO)w ) do(x) = Quu(2) V2 e B(X). (33)

The following proposition will characterize the kernels having a POVM with
an operator density. To prove the result, we need the following technical
lemma.

Lemma 2. Let U be a positive measure on X and B: X — L(Y) such that
(B(")y,y') € LNX, D) for ally,y € Y. Then, the sesquilinear form

YxY—L(X,0), (y.¥)— (BO)y,y) (34)
18 continuous.

Proof. For fixed y € Y [resp. ¥ € V] the map ' — (B(")y,y’) [resp. y —
(B(-)y,y')] is continuous from ) into Ll(X', V) by the closed graph theorem,
i.e. the application defined in (B4]) is separately continuous in y and 3’. So,
the closed graph theorem again assures the joint continuity. O

Proposition 13. Let © be a positive measure on X and B: X — L(Y)
such that (B(-)y,y') € LY(X,D) for ally,y’ € Y and B(x) > 0 for D-almost
all x. Then

K(at) = [ x(t=2)B(0 o) )

b's
is a translation invariant Mercer kernel, and the space Hy is embedded in
L*(X,0;Y) by means of the feature operator

(W i)(x) = / X@BOO FO)d (), (36)

X
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where both the above integrals converge in the weak sense.

If Y is finite dimensional or X is compact, any translation invariant kernel
is of the above form for some pair (U, B).

If Y = C, one can always assume that B = 1 and U is a bounded positive
measure.

Proof. Let © and B as in the assumptions. Given a Borel subset Z of X
define Q(Z) as the unique bounded operator satisfying

(@) = [ 1BOOw1) d5(x).

The fact that Q(Z) is a bounded operator follows from Lemma 2 and from
the continuity of the map Ll(X v) 3 ¢ — [,é(x)di(x) € C. Clearly,

Q(Z ) is a positive operator and monotone convergence theorem implies that
Z — Q(Z) is a POVM on X. By construction K (z,t) = [¢ x(t — 2)dQ(x),
so K is a translation invariant Mercer kernel by T heorem Bl Setting

Yo: Y — LAX,5:Y) (%) (x) = x(@)BX)"?y,

we see that K(z,t) = v}y and
(vif.y) = (/. %y>2 = /X (FO0x(@)B() 2y ) do(y)
= [ @ (B0 0.0y @i

for all f € L*(X,;)), from which (B8) follows.

Assume now that ) is finite dimensional or X is compact and K is a trans-
lation invariant Mercer kernel. Theorem [l ensures that there exists a POVM
Q on X takmg value in Y such that K(z,t) = [ x(t —2)dQ(x). If X is
compact, X is discrete. Let © be the counting measure and B(yx) = Q({x})
for all x € X , then (7, B) satisfies the required properties.

If Y is finite dimensional, choose Uy as in (B2). It follows that for any
v,y € )Y, the complex measure (), , has density b,, € Ll(X ,Ug) with
respect to Ug. In particular, b,,(x) > 0 for Dg-almost all x € X. Let
Y1, - - -, yn be a basis of J and by linearity extend by, ,. € Ll(X, Ug) to a map
B:X — L(Y), which clearly satisfies the required properties.

If Y = C, the claim is clear. O

If Y = C, Proposition I3 is already given in [22].
We end by showing a sufficient condition ensuring that a translation in-
variant Mercer kernel is of the form given in Proposition I3l
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Proposition 14. Let K be a translation invariant Mercer kernel. Suppose
that (Ko()y,y') € LY(X,dx) for ally,y' € Y. Let

<Bumyw=4xummmmny vy ey, (37)

Then
(i) B(x) is a bounded nonnegative operator for all x € X;
(ii) (B()y,y) € LY(X,dx) for all y,y' € Y;

(iii) for all x,t € X,

K@J%iéxﬁ—@BWM% (38)

where the integral converges in the weak sense.

Proof. The operator B(x) defined in (37) is bounded as a consequence of
Lemma [2] (applied to Ky) and of the continuity of the map L'(X,dx) 3 ¢ —
F(o)(x) € C.

Since (Ko(+)y, y) is a function of positive type, by Fourier inversion theorem
(B()y.y) € L'(X,dy), and

(Ko(z)y, y) = /XWU?(X)@/,.U) dy,

which is (38). O

5.2 Universality

In this section we study the universality problem for translation invariant ker-
nels on an abelian group in terms of the characterization given by Theorem
and Proposition [3l The assumptions and notations are as in Section B.11
To state the following result, we recall that the support of a POVM (@ is the
complement of the largest open subset U such that Q(U) = 0.

Proposition 15. Let K be a translation invariant Mercer kernel, and Q) its
associated positive operator valued measure. If the RKHS Hg is dense in
L3*(X, 1; V) for any probability measure p, then supp(Q) = X.

Proof. Suppose there is an open set U C X such that QU) = 0. Let

A

Xo € U, so that yoU ™! is a neighborhood of the identity element of X. Let
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it be a probability measurdd on X such that supp F(u) C xoU ™! and set

o(z) = xo(x)y with y € Y \ {0}. Then (26) gives
(L. )= /X /X /X 3t = 2)x0(2)X0(0)AQy » (V) dp(x)dp(t)
- /X ) (xox )2 dQy (x) = 0.

This shows that L, is not injective, i.e. K is not universal. O

We now characterize the universality of the kernels defined in terms of
the pair (7, B) by means of (35).

Proposition 16. Given a positive measure ' on X and B : X — L(Y)
such that (B(-)y,y') € LY(X,D) for ally,y’ € Y and B(x) > 0 for D-almost
all x, let K be the translation invariant Mercer kernel given by (7).

(i) If Hk is dense in LA(X, u; Y) for any probability measure p, then both
supp ¥ = X and supp B=X .

(ii) If supp v = X and B(x) is injective for v-almost all x € X, then Hx
is dense in L*(X, u; V) for any probability measure y.
In the case X 1s compact also the converse holds true.

(iii) If ¥ = C and B = 1, Hg is dense in L3(X,1;Y) for any probability
measure p if and only if supp v = X.

Proof. Ttem (i) follows from Proposition [[H and (33)).
Let now u be a probability measure on X . Using (B5]), we have

(Luoeo)= [ [ [ xtt = 2) (B0 ola)) Ao du() e
= [ (BOOFen (6. Flem( ) dot) (39

(ii) If B(x) is injective for almost all x € X and supp # = X, then, by
the above equation, positivity of B(x) and the injectivity of Fourier
transform, Lo # 0 if ¢ # 0 in L*(X, u; V). Therefore, H is dense in
L*(X, u; Y) for any probability measure p.

Suppose X is compact, so that X is discrete. If Hy is dense in

SFor example, if V is a compact symmetric neighborood of the identity of X such
that V2 C xoU™ !, let h = 1y * 1y, so that (up to a constant) the measure du(r) =

FY(h)(z)dz = ‘.7-"1(11/)(;1c)|2 dz has the required property.
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LA(X ,1;Y) for any probability measure p, supp? = X by item (i).

If xo € X and y € ker B(xp), choose du(z) = dz and ¢(z) = xo(z)y,
so that F(pu)(x) = 0, -1 y. We thus have

(Lue, @) = (B(x0)y, y) ?(x0) = 0.

Since L, is injective, this implies ¢ = 0, i.e. y = 0.

(iii) Since B = 1, the ‘if” part is clear from item (ii). The converse follows
by item (i).
U

By inspecting the proofs of Propositions [[5 and [I8, one can easily replace
L3(X, pu; V) with any LP(X, u;Y), 1 < p < oo, in the statements. The same
holds for Corollary [6 below.

Remark 3. If the translation invariant kernel K is Cy, then Propositions
and [I0 characterize universality of K.

Remark 4. If X = R?, ) = C, and supp 7 is a subset of X = R? such
that every entire function on C% vanishing on it is identically zero, then K
is k-universal (see [22, Proposition 14]). This follows by (B9), taking into
account that, for compactly supported g, the Fourier transform of ¢u can
be extended to an entire function defined on C¢.

In particular, if d = 1 a sufficient condition for x-universality is that supp v
has an accumulation point.

Based on the above remark, we give another example of compact-universal
kernel, which is not universal, see also Example [8

Example 11. Let K : R x R — C be the Cy-kernel
1 .
K ($7 t) _ / 627ri(t—m)pdp _ S111 Qﬂ(t B .Z’)’
-1 m(t — )

with U the restriction of the Lebesque measure to [—1,1]. Since the support of
U admits an accumulation point, K is compact-universal by the last remark.
On the other hand since supp v is not the whole R, K 1is not universal by
Proposition [10.

We now exhibit a particular case in which Proposition [16] applies.

Corollary 6. Let K be a translation invariant Mercer kernel such that
(Ko()y,y) € LNX,dz) for all y,y' € V. Let B : X — L(Y) be as in
7). If B(x) is injective for dx-almost all x, then the reproducing kernel
Hilbert space Hy is dense in L*(X, u; V) for any probability measure pu.

Proof. Since the support of the Haar measure dy is X, the claim is then a
consequence of Proposition [I6l. O
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6 Examples of universal kernels

In this section we present various examples of universal kernels, some of them
has been already introduced in Section

We start with the gaussian kernel, which is a well known example of uni-
versal kernel. The first proof about universality is given [30] with a different
technique and in [22] by means of the Fourier transform. In both paper only
compact-universality is taken into account.

Example 12. Let X be a closed subset of R, Y = C and

llz—¢]12

K(x,t) =e 202 x,t e X,

where o > 0. Then K is a Cy-universal kernel.

Proof. Assume first that X = R%, regarded as abelian group, then x is trans-
lation invariant kernel with kg in Co(RY) N LY (RY, dz). According to (B7)

B(p) = \/(2702) e—2m % p|l?

where the dual group is identified with R? by means of y,(z) = ™. Since
B(p) > 0 for all p € R? universality is a consequence of Corollary
If X is an arbitrary closed subset of R? it is enough to apply Corollary@. O

Next example is well known in functional analysis (see, for example, [3]).

Example 13. Let X =R, Y = C and let

Kz, t) = e ™t

Then the kernel k is a Co-universal kernel and H, = W' (R), the Sobolev
space of measurable complex functions f on R with finite norm

1 = [ [lF@F +17@)F] d.

where f' is the weak derivative.

Proof. The same reasoning as above, observing that B(p) = 7r++7rp? > 0 for

all p € R. O

Next example characterizes universal kernels of the form K = kB — see
Example Bl
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Example 14. Let k be a Cy-scalar reproducing kernel and B a positive op-
erator. The kernel K = kB s universal if and only if k is universal and B
18 1njective.

Proof. We have to show that, given a probability measure u, H,.p is dense
in L?(X,p;Y). The space H,p is unitarily equivalent to H, ® ker B+ by
means of W (e @ y)(z) = p(x)Bzy, see Example Bl Hence, it is enough to
prove that H, ® BzY is dense in L%(X, u) ® V. This is the case if and only

if H,. is dense in L2(X, y1) and B2 has dense range, and this last condition is
equivalent to the fact that B is injective since B is a positive operator. [

The same result holds replacing Cy-kernel with Mercer kernel and univer-
sality with compact-universality.

Example 15. Let K : X x X — C and k' : X' x X! — C be two scalar Cy
reproducing kernels on X and X', respectively. Let I' be the identity operator
on H,.

(i) The H.-kernel K = kI’ if universal if and only if k is universal.

(ii) Fized a probability measure i/ on X', the L*(X', /) -kernel K = KL,
is universal if and only if k is universal and H, is dense in L*(X', /).

(iii) The scalar kernel k x k' is universal if both k and k' are universal.

Proof. Ttems (i) and (ii) follow immediately from Example [[4 and Propo-
sition [0l Ttem (iii) is a consequence of Proposition [ and the density of
Co(X)(X)CQ(X,) in CQ(XXX,). ]

The following class of examples is considered in [5].

Example 16. Let X be a locally compact second countable abelian group.
Let {Bi}iN:1 be a finite set of positive operators on') and {“6}£i1 be a finite
set of scalar functions of positive type in Co(X)N LY (X, dz). The translation

mvariant kernel K N
t) = Z Ko(z —1)B

is universal provided that N;kerB" = {0} and, for each i =1,...N, there is
an open dense subset Z' C X such that F(k}) >0 on Z'.
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Proof. Clearly, (Ko(-)y,v') is in L*(X,dz). Moreover, according to (31), for

A

allye Y and y € X

Each Z¢ is open and dense, hence Z = NZ' is dense in X. Let x € Z and
y € Y such that B(x)y = 0; then B'y = 0 for all i = 1,..., N, since every
B' is a positive operator and F(k}) > 0 on Z’, so that by assumption y = 0.
Therefore, K is universal by Corollary O

A Vector valued measures

In this appendix we describe the dual of Co(X;Y). For Y = C, it is a well
known result that Co(X)* can be identified with the Banach space of complex
measures on X. For arbitrary ), a similar result holds by considering the
space of vector measures. If X is compact, this result is due to [28] and we
slightly extend it to X being only locally compact. The proof we give is
simpler than the original one also for X compact.

Moreover, by using a version of Radon-Nikodym theorem for vector valued
measures, it is possible to describe the dual of Co(X;)) in a simpler way.
Indeed, the following result holds.

Theorem 7. Let T € Co(X;Y)*. There exists a unique probability measure
poon X and a unique function h € L>®°(X, u;Y) such that

T(f) = /X @) h@)) dulz)  f € Co(X; D) (40)

with ||h(x)|| = ||T|| for p-almost all x € X.
Proof. Tt follows combining Theorems [§ and [ below. O

Observe that, given p and h as in the statement of the theorem, if we
define T by ({@0), then T € Cy(X;)Y). Hence (@) completely characterizes
the dual of Co(X;)) in terms of pairs (u, h).

To prove the theorem, we recall some basic facts from the theory of vector
valued measures (see [I1} [19]). If A € B(X), we denote by II(A) the family
of partitions of A into finite or denumerable disjoint Borel subsets.

Definition 3. A vector measure on X with values in Y is a mapping M :
B(X) — Y such that
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(i)
sup ZHM i)l < oo

{A; }ell(X)

(i) for all A € B(X) and {A;} € TI(A)
= Z M(A4;)

where the sum converges absolutely by item (i).

If M is a Y-valued vector measure on X, for all A € B(X) we define

M[(A) = sup > |IM(A;

{A; }eII(A) el

Then, |[M| is a bounded positive measure on X, called the total variation of
M.

The integration of a function f € L'(X,|M|;Y) with respect to M is
defined as it follows. Let St(X;Y) be the space of functions f =" | 14,v;,
with A; disjoint Borel sets and v; € Y (14 is the characteristic function of
the set A). For such f’s, define

n

/X ), dM(@) = S (o, M(AD) (41)

i=1
Since

n

> v M( <Z!|vz||||'\/| ||<Z|M\ ) il = 1Al
i=1

the integral (A1) extends to a bounded functional on L'(X, |M|;)), which is
denoted again by [, (f(z),dM(z)). By Theorem 4.1 in [19], then there exists
h e L*(X,|M;Y) such that

/(f(x)adM(CE»=/<f($)ah($)>d|'\/|\($) vf € LY(X M Y),

and ||h(z)|| = 1 for [M|-almost all z. These facts are collected in the following
theorem.

Theorem 8 (Radon-Nikodym). If M is a YV-valued vector measure on X,
there exists a unique |M|-measurable function h : X — Y such that ||h(z)|| =
1 for [M|-almost all x and

/X (f(x), dM(x)) = /X (), b)) dM|(x) Vf € L'(X, M5 D).
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The function h is called the density of M with respect to |[M|.
We denote by M (X;)) the space of Y-valued vector measures on X. The
space M(X;)) is a Banach space with respect to the norm

M} = M](X)

(see [II]). If ¥ = C, we let M(X) = M(X;C). The next duality theorem is
shown in [28] for X compact — see also [11].

Theorem 9. If Co(X;Y) is endowed with the Banach space topology induced
by the uniform norm, then Co(X; V)" = M(X;Y), the duality being given by

(f,M):/X(f(x),dM(x)) VieC(X;Y), Me M(X;)).

Proof. By Theorem [§] it is clear that, if M € M(X;)), then

Tulf) = [ (@) aM@) = [ (7). ) dMI(@)
defines a bounded functional Ty on Co(X; ).
Clearly ||Tu] < |IM||. To show that ||Tu| = ||[M||, fix by Lusin theorem
a function g € Cy(X;Y) such that g(x) = h(x) for x € X \ Z, Z being a
|M|-measurable set with [M[(Z) <'¢, and ||g|[,, < [|All|3 = 1. For € small
enough, we then have

IM[(X) = 2¢ < [M[(X'\ Z) = [M|(2) <

/}{(g(x)ah(md“\/'\(x) < M[(X).
This shows that || Twu|| = ||M]].

Suppose now T € Co(X;V)". For v € Y, let i, : Co(X) — Co(X; V) be
the bounded operator given by

[iv(P))(x) = p(z)v.

Since T, € Co(X)*, by Riesz theorem there exists a measure p, € M(X)
such that

7o) = [ o)) and T = )
X
For all A € B(X), let M(A) be the vector in ) such that
(v, M(A4)) = 1y (A)
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(M(A) is well defined, since |, (A)] < [|pol| = [|T% ]| < [T ||v]])-
We now show that, if A € B(X) and {A;} € II(A), then

> IMA) | < T,

so that item (i) of Definition [ holds. It is enough to prove it for all finite
partitions {A;}iz1. .. Let v; = M(A;)/|IM(A;)] (we set v; = 0 whenever
M(4;) =0). We have

Do IMAY =D (0 M(A)) = (A

Set v =3, |ft;],
density with respect to v. Foralli = 1...n, fix a sequence {apy) Fien in Co(X)

which is v a bounded positive measure, and every ,, has

such that lim; <p§-i) (x) = 14,(x) for v-almost all z. Define

_ [ (k)(x)’] Z(py)(x)v

Then, ¢; € C.(X;Y), and ||¢;(x)] < 1 for all . Moreover,

|

" 1
lim [1 % Z cp§-k) (m)‘] gogz) (x) =14,(z) for v-almost all x.

J
k=1

~1
)l’))] P2 <1 Va, i

and

Therefore

> M4 | - T,
= ZZ Mooy, (Al) - Tivi

-1
vl o
k

<2 /X 1Ai<x>—[ AP@|| e @) pdun ()

oo
]_) O
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by dominated convergence theorem. On the other hand, [T;| < ||T°|| |[¢5]| ., <
|T||. It follows that > ", [M(A;)|| < [|T], as claimed.

We now show that
M(A) =) M(4)

(absolutely) for all A € B(X) and {A;} € II(A). We have just proved that
the right hand side is absolutely convergent, and the equality follows by

<v, > M(AZ->> =3 (A) = il(4) = (M) Yo e Y.

Therefore, M is a Y-valued measure. It remains to show that T = Ty.
Let h and |M| be associated to M as in Radon-Nikodym theorem. Then, for
any Borel set A C X, we have p,(A) = [, (v, h(z)) d[M|(z), from which it
follows that p, has density (v, h(x)) with respect to |[M|. For ¢ € C.(X) and
v € Y, we thus have

T(pv) = /X o(@)duy(z) = /X (@), h(z)) dIM|(z) = T (pv).

Then, T'= Ty by density of C.(X) ® Y in Co(X; V). O
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