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Abstract

In this paper we discuss the Spectral Support Estimation algorithm [1] by
analyzing its geometrical and computational properties. The estimator is
non-parametric and the model selection depends on three parameters whose
role is clarified by simulations on a two-dimensional space. The performance
of the algorithm for novelty detection is tested and compared with its main
competitors on a collection of real benchmark datasets of different sizes and
types.

1. Introduction

Support estimation emerged in the sixties in statistics with the seminal
works of Rényi and Sulanke [2] and Geffroy [3], and in the last decades
became crucial in different fields of machine learning and pattern recognition
as, just to mention a few, one class estimation [4], novelty and anomaly
detection [5, 6]. These problems find applications in different domains where
it is difficult to gather negative examples (as it often happens in biological
and biomedical problems) or when the negative class is not well defined (as
in object detection problems in computer vision).
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Support estimation deals with the following setting. The population data
are represented by d-dimensional column vectors of features, but they live in a
proper subset C ⊂ Rd distributed according to some probability distribution
p(x)dv(x), where dv is a suitable infinitesimal volume element of C. For
example, C could be a curve in Rd, dv is the arc length and p(x) is the density
distribution of the data on the curve. Both the set C and the distribution
p(x)dv(x) are known only through a training set {x1, . . . , xn} of examples
drawn independently from the population according to p(x)dv(x). The aim
of support estimation is to find a subset Cn ⊂ Rd such that Cn is similar to
C, if n is large enough.

In this paper we focus on support estimation of a probability distribution,
that is, given a training set of examples, we would like to define a set which is
a good estimator of the support of the distribution, i.e. the smallest (closed)
subset having probability one. To this purpose we review the Spectral Sup-
port Estimation algorithm introduced in De Vito et al. [1] with an emphasis
on its geometrical and computational properties and on its applicability to
real novelty detection problems.

To have good estimators some geometrical a-priori assumption on C is
needed. For example, if C is convex, a choice for Cn is the convex hull of
the training set, as first proposed in Dümbgen and Walther [7]. If C is an
arbitrary set with non-zero d-dimensional Lebesgue measure, Devroye and
Wise [8] define Cn has the union of the balls of center xi and radius ε with
ε going to 0 when the number of data increases. A different point of view is
taken by the so-called plug-in estimators. In such approach one first provides
an estimator of the probability density and then Cn is defined as the region
with high density [9].

However, in many applications the data approximatively live on a low
dimensional submanifold, whose Lebesgue measure is clearly zero, and one
may take advantage of this a priori information by using some recent ideas
about dimensionality reduction, as for example manifold learning algorithms
[10, 11, and references therein] and kernel Principal Component Analysis
[12]. Based on this idea, Hoffmann [13] proposes a new algorithm for novelty
detection, which can be seen as a support estimation problem. This point of
view is further developed in De Vito et al. [1], where a new class of consistent
estimators, called Spectral Support Estimators (SSE), is proposed.

The contribution of this paper is threefold. First, we review the SSE algo-
rithm emphasizing its geometrical and computational aspects (while we refer
the reader interested in its statistical properties to De Vito et al. [1]). Sec-
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ond, we discuss the dependence of the algorithms on its hyper-parameters
with the help of a thorough qualitative analysis on synthetic data. This
analysis also allows us to show the quality of the estimated support, which
adapt nicely and smoothly to the training data, similarly to kernel PCA [13].
Third, we show the appropriateness of the algorithm on a large choice of real
data and compare its performances against well known competitors, namely
K-Nearest Neighbours, Parzen windows [14], one class Support Vector Ma-
chines [4], and kernel PCA for novelty detection [13]. To make the match
fair, for each algorithm we select the optimal choice for the hyper-parameters
following a procedure developed in Rudi et al. [15].

To have an intuition of the SSE algorithm, suppose C is a r-dimensional
linear subspace of Rd. Consider the d× d-matrix

T =

∫
C

xx′ p(x)dx,

here the volume element dv of C is simply the r-dimensional Lebesgue mea-
sure dx. It is easy to check that the null space of T is the orthogonal com-
plement of C in Rd, that is, C is the linear span of all the eigenvectors of
T with non-zero eigenvalues. Since a consistent estimator of T is the em-
pirical matrix Tn = 1

n

∑n
i=1 xix

′
i, one can define Cn as the linear span of the

eigenvectors of Tn whose eigenvalue is bigger than a threshold λ. As in su-
pervised learning, the thresholding ensures a stable solution with respect to
the noise. Now, if λ goes to zero when n increases, Cn becomes closer and
closer to C, providing us with a consistent estimator. Furthermore, to test
if a new point x of Rd belongs to C or not, a simple decision rule is given
by Fn(x) =

∑r
`=1(u

′
`x)2, where u1, . . . , ur are the eigenvectors spanning Cn.

Indeed, 0 ≤ Fn(x) ≤ x′x for all x ∈ Rd, but it is close to x′x (that is, the
norm of x is near to the projection of x over Cn) if and only if x is near to
C. Note that if Tn is replaced by the covariance matrix, then Cn is nothing
else than the principal component analysis.

More in general, if C is not a linear subspace the above algorithm does
not work, as it happens in binary classification problems with linear Support
Vector Machines if the two classes are not linearly separated. This suggests
the use the kernel trick which requires a feature map Φ, mapping the input
space Rd into the feature space H, with Φ(C) a linear subspace of H. This
strong condition is satisfied by the separating reproducing kernels introduced
in De Vito et al. [1].
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The reminder of the paper is organized as follows. In Section 2 we review
the SSE algorithm. In Section 3 we discuss how the algorithm is influenced
by the choice of the parameters, supporting our theoretical analysis with
simulations on synthetic data. In Section 4 we compare SSE with other
methods from the literature on a vast selection of real datasets. Section 5 is
left to a final discussion.

2. A spectral algorithm for support estimation

In this section we describe the SSE algorithm. We first set the mathe-
matical framework, hence we introduce the algorithm by discussing its geo-
metrical interpretation, the role of the separating kernels and we give some
examples of separating kernels. We then derive a simple implementation of
the algorithm and observe how the algorithm can be implemented in different
methods according to a specific choice of a filter (similarly to what was done
in Lo Gerfo et al. [16] for the supervised case).

2.1. The framework

We assume that the input space is Rd with the euclidean scalar product
x′t between two column vectors x and t. The population lives on a closed
subset C ⊂ Rd and is distributed according to some probability density p
only defined on C, namely

p(x) > 0 ∀x ∈ C and

∫
C

p(x)dv(x) = 1,

where again dv is the infinitesimal volume element of C. For any measurable
subset E of Rd, we set

ρ(E) =

∫
C∩E

p(x)dv(x),

then ρ is a probability measure on Rd and C is the smallest closed subset
of Rd such that ρ(C) = 1, namely C is the support of the measure ρ. In
general, ρ does not have density with respect to the Lebesgue measure of
Rd, as it always happens if C is an r-dimensional sub-manifold with r < d.
Further, we assume the measure ρ is unknown, but we have a training set
{x1, . . . , xn} sampled independently and identically distributed according to
ρ.
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Our aim is to find a closed subset Cn ⊂ Rd such that Cn is statisti-
cally consistent, i.e. it becomes similar to C with high probability when the
number of examples n goes to infinity.

Since in the general case C is not a linear subspace, we consider a suitable
feature map Φ from the input space Rd into a Hilbert space H, whose scalar
product will be denoted by 〈·, ·〉H. As a common practice for kernel machines,
we state the condition on the feature map in terms of its reproducing kernel
K(x, t) = 〈Φ(x),Φ(t)〉H. As usual, we identifyH with the reproducing kernel
Hilbert space associated with K, so that the elements of H are functions on
Rd, the feature map is given by Φ(x) = K(·, x) ∈ H, and for any f ∈ H and
x ∈ Rd, f(x) = 〈f,Φ(x)〉H [17].

In the case of SSE we need to assume K satisfies the following properties:

i) Mercer: the map K : Rd × Rd → R is continuous, i.e K is a Mercer
kernel;

ii) Normalization: for all x ∈ X it holds that K(x, x) = 1;

iii) Separability: for any closed subset T ⊂ Rd and any point x 6∈ T there
exists f ∈ H such that 〈f,Φ(x)〉H 6= 0 and 〈f,Φ(t)〉H = 0 for all t ∈ T .

As shown in De Vito et al. [1] this assumption is crucial to prove the statistical
consistency of the SSE algorithm.

The requirement that K is a Mercer kernel is very natural for kernel ma-
chines, whereas the normalization assumption simply makes the computation
easy and, as shown in De Vito et al. [1], the separating property is preserved
after normalization. The crucial requirement is the separability condition.
Indeed, it implies that

Φ(C) = span{Φ(x) | x ∈ C} ∩ Φ(Rd),

which means that Φ(C) is the intersection of a linear space of H and Φ(Rd),
here span{Φ(x) | x ∈ C} is the closed subspace generated by the family
{Φ(x)}x∈C .

Examples of separating kernels are given in De Vito et al. [1], here we list
two general purpose kernels that can be applied on a large class of problems:

a) Laplacian (Abel) kernel:

K(x, t) = exp(−|x− t|
γ

) (1)

where γ > 0 and |x− t| is the euclidean norm in Rd;
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b) `1-kernel:

K(x, t) = exp(−
d∑
j=1

|xj − tj|/γ) (2)

where γ > 0 and xj and tj are the j-th component of the vectors x and t,
respectively.

Notice that the Gaussian kernel does not have the separating property since
the functions in the corresponding reproducing kernel Hilbert space are an-
alytic [17].

2.2. The algorithm: Tikhonov regularization

We are now in position to describe the SSE algorithm. Following the
intuition discussed in the introduction, we replace the matrix Tn by with its
kernel version. Now Tn is a linear operator on H defined by

Tnf =
1

n

n∑
i=1

Φ(xi) 〈f,Φ(xi)〉H

Tnf(x) =
1

n

n∑
i=1

K(x, xi)f(xi), (3)

for all f ∈ H, which is positive and with finite rank.
Furthermore, given λ > 0 we introduce the regularized operator

Pn = (λ I +Tn)−1Tn,

where I is the identity operator. Note that, if f is an eigenfunction of Tn
with eigenvalue σ, then Pnf = σ

σ+λ
f , and the range of Pn is a regularized

version of the linear span of the eigenfunctions of Tn with non-zero eigenvalue
(Tikhonov regularization).

The empirical decision rule is given by

Fn(x) = 1− (〈Φ(x),Φ(x)〉H − 〈PnΦ(x),Φ(x)〉H)

=
〈
(λ I +Tn)−1TnΦ(x),Φ(x

〉
H (4)

where, by construction, 0 ≤ Fn(x) ≤ 1 for all x ∈ Rd. The corresponding set
estimator Cn is defined by

Cn = {x ∈ Rd | Fn(x) ≥ 1− τ},
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where τ > 0 is a threshold parameter. As it happens for kernel machines,
the computation of Fn reduces to a finite dimensional problem, since it holds
that

Fn(x) = k′n.x(λn In +Kn)−1kn.x, (5)

where Kn is the n× n Gram matrix whose (i, j)-entry is K(xi, xj) and kn,x
is the n-dimensional column vector whose i-th element is K(x, xi). The
corresponding pseudo-code is listed in Algorithm 1, which shows that SSE
algorithm can easily implemented in a few lines.

Algorithm 1 Spectral Support Estimator with a Tikhonov filter controlled
by a regularization parameter lambda and a kernel implemented by the func-
tion kernel– Matlab Code.
1 function [rK] = learn_support(X,lambda,r);

2 K=kernel(X,X);

3 rK=pinv(K+lambda*eye(size(K,1))); % Tikhonov filter

4 end

5

6 function [Fn] = decision_rule(X, x,rK) % Eq. (3)

7 kx=kernel(X,x);

8 Fn = sum((rK*kx).*kx,1);

9 end

10

11 %----------------------

12 % main script

13 .....

14 rk=learn_support(X,lambda,r); % training set in matrix X

15 y=decision_rule(X,x,rK); % test datum x

16 y >= 1- tau; % membership to the set Cn

The Singular Value Decomposition of the Gram matrix Kn provides an
alternative procedure to compute Fn. We start off from the SVD of Kn

Kn =
[
v1| . . . |vr

]
diag(σ1, . . . , σr)

[
v′1| . . . |v′r

]
,

where r is the rank of Kn and v1, . . . , vr ∈ Rn are the eigenvectors with
non-zero eigenvalue (and v′`v` = 1). Then, for any ` = 1, . . . , r we define the
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out-of-sample extension f` ∈ H to be

f`(x) =
1
√
nσ`

n∑
i=1

K(x, xi)v
i
` =

1
√
nσ`

k′n,xv`.

Finally Tnf` = σ`
n

, f`, 〈f`, f`′〉H = δ`,`′ leading us to

Fn(x) =
r∑
j=1

σ`
σ` + λ

|f`(x)|2. (6)

2.3. Other spectral filters

Equation (6) makes it clear that the regularization parameter λ reduces
the contribution of the eigenvectors v` with small, but non-zero eigenvalue
and, hence, ensures the algorithm to be stable against the noise. Clearly other
regularized operators Pn can be considered by replacing the Tikhonov filter
σ/(λ+σ) with a low-pass (in the frequencies domain) filter rλ : [0, 1]→ [0, 1].
In this case the corresponding decision rule will be given by

Fn(x) =
r∑
j=1

rλ(σ`)|f`(x)|2. (7)

The filter is defined only on the unit interval since the normalisation
condition on the kernel implies that the eigenvalues of Tn are between 0
and 1. The requirement that rλ(σ) is also in [0, 1] ensures that also Fn takes
values in the unit interval. A discussion about the mathematical assumptions
of the filter can be found in Lo Gerfo et al. [16], here we list a few possible
examples:

• Truncated SVD: rλ(σ) =

{
0 σ < λ

1 σ ≥ λ

• Spectral cut-off: rλ(σ) =

{
σ
λ

σ < λ

1 σ ≥ λ

• Landweber: rλ(σ) = σ

m∑
k=0

(1− σ)k .
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Kernel PCA (KPCA) corresponds to the Trunctated SVD (TSVD) filter,
but in KPCA the Gram matrix is usually replaced by covariance matrix
in the feature space, see Hoffmann [13]. Notice that, in our setting the
separating property justifies the SSE algorithm from a geometrical point of
view therefore we do not need to have data with zero mean and thus, unlike
KPCA, the normalization of the data is not required.

We conclude by observing that, from the implementation point of view,
the adoption of a different filter simply amounts at changing line 3 of Algo-
rithm 1.

2.4. Computational cost

We discuss the computational cost in the worst case when Kn is a full
matrix. With the Tikhonov filter, for each choice of λ and γ, the complexity
is of order n3. The cost of the SVD is also of order n3, though the constant
is worse, but it provides a solution for all the values of the regularization
parameter λ, the so-called regularization path. This means that, to the price
of a single SVD, we obtain different solutions for different λ (see Eq. 6).
Also, from Eq. (7) we notice that the same complexity holds true for an
arbitrary filter.

Moreover for TSVD, one needs to compute only the eigenvectors whose
eigenvalues are bigger than λ, and one can use some approximation proba-
bilistic algorithms, see for example Halko et al. [18], to further reduce the
complexity. Instead, for the Landweber filter, an easy computation shows
that

Fn(x) = k′n,xa(x),

where the coefficient vector a can be evaluated iteratively by setting a0(x) =
0, and

a`(x) = a`−1(x) +
1

n
(kn,x −Kna

`−1(x))

for ` = 1, . . . ,m, so that the complexity is of the order n2m, where m is the
number of iterations.

2.5. Final remark on the separating property

We conclude the section with a remark on the need for the separating
property of a kernel. Eq. (5) and the definition of Cn are meaningful also if
a reproducing kernel K does not have the separating property. In this latter
case, Cn is a consistent estimator of span{Φ(x) | x ∈ C}∩Φ(Rd), which is in
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general bigger than C, unless C is a good set for K. For example, if K is the
linear kernel, the SSE algorithm is consistent only if C is a linear subspace
of Rd. Hence the separating kernels play the same role as the universal
kernels in supervised learning (however the two notions are not equivalent,
since there exist universal kernels, which are not separating as the gaussian
kernel). Next section will explicitly show this feature when adopting a linear
kernel on a non linear subspace.

3. The parameters choice

In this section we give a qualitative evaluation on synthetic data of the
effect of parameters choice on the SSE algorithm.

The SSE algorithm described in the previous section depends on two
parameters: the regularization parameter λ and the threshold τ . Also we
have the parameters of the kernel, for instance γ the width of the Laplacian
kernel. We first note that, if we set λ = τ = 0, the separability property
implies that Cn = {x1, . . . , xn}, so that we are over-fitting the data. On the
contrary, if λ goes infinity, Fn(x) becomes equal to 0 so that Cn is empty or
Rn (depending on the choice of the parameter τ) and we are over-smoothing
the data, as it happens, if τ goes to 1 since Fn(x) ≥ 0.

In general, λ and τ are connected. For large λ we obtain smooth Fn(x)
taking values in a small sub-set of [0, 1] close to 0. In this case, for a wide
range of τ we obtain an empty estimate of the support, thus the choice of
τ is critical to obtain a non-empty estimate. Conversely, for small λ Fn(x)
will be oscillating and will take values in the whole range [0, 1]. In this case
different τ produce very different non-empty support. In this case it is critical
to choose a solution among the ones available.

In the following we discuss the role of these parameters on two meaningful
simulations of a linear and a non linear subspace C. To do so, we apply the
SSE algorithm with the Tikhonov filter clarifying the meaning of the param-
eters involved and their effect on the estimation of a support and discuss the
effect of choosing between a linear and a non linear kernel in both cases.

As a separable non-linear kernel we choose the Laplacian kernel given by
Eq. (1). In this case we notice how λ and γ are again tightly connected and
play similar roles.

We consider a space X = [0, 1]2 and a probability density ρ the support
of which is a parametric curve

Xρ = {(x1, x2) ∈ [0, 1]2|x1 = x1(t) x2 = x2(t), t ∈ I}
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Figure 1: Support estimation of a linear segment. Decay of the eigenvalues of the Gram
matrix with linear and Laplacian kernels.

where I is a compact interval sampled with a uniform distribution. The
training set S = {x1, . . . , xn} is i.i.d. according to ρ. Additive uniform noise
may be added to the data to model a more realistic situation where the
measured data do not always belong exactly to the support.

3.1. Linear support

First we consider a training set S = {x1, . . . , xn} (n = 10) sampled on a
probability distribution ρ the support of which is a segment, more precisely
the unit segment on the x-axis,

Xρ = {(x1(t), x2(t)) | t ∈ [0, 1]} with

{
x1(t) = t
x2(t) = 0

With a normalized linear kernel K(x, t) = x′t/
√
x′x t′t we obtain a Gram

matrix Kn where each entry Kij = cos θij and θij is the angle between xi and
xj. If data belong exactly to the segment, then cos θij = 1 for each i and j,
and the Gram matrix will have only one non-zero eigenvalue σ1 = n; thus
Kn/n will have σ1 = 1 has it can be noticed in Figure 1. We observe the
highest eigenvalue equal to 1, all the others are negligible. In the absence of
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Figure 2: Support estimation of a linear segment. The set Cn for different values of τ .
Row I: linear kernel and noise-less data. Row II: linear kernel with noisy data. Row III:
Laplacian kernel with noisy data.
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noise we do not need to add any regularization to the SSE algorithm, thus
λ = 0. Figure 2 (row I) shows different supports that we have estimated by
changing the offset value of τ : in the figure the green lines are the boundaries
of the estimated support. Red dots are an even sampling of the space X
within the estimated support. With τ = 10−4 we obtain a good estimate of
the support, where a segment is approximated with a line. As τ increases,
regions not belonging to the support are included in the estimate.

In the presence of additive noise on the data sampled from ρ, such data
will not be exactly on the ideal support. We perturbate data with additive
noise: x̂i = xi + εξ with ξ uniformly distributed in [−1, 1]. The spectrum
of the Gram matrix will change, as shown in Figure 1: here we have two
eigenvalues that are not negligible and two eigenvectors thanks to which the
surface Fn(x) corresponds to a hyperplane. In this case it is not possible to
approximate Xρ regardless the choice of τ . We then look for a regularized
solution, λ > 0. With λ = 0.1 we attenuate the effect of noise on the
previously discussed case and obtain a good approximation (see Figure 2,
row II, the estimate obtained with τ = 0.1). Notice the shrinking effect of
regularization on the estimated surface Fn(x): in this case, for τ = 0.08 we
still obtain an empty support.

We conclude this section by analysing the results obtained with a non-
linear Laplacian kernel; in this case we have a further parameter to take into
account, γ. In these experiments we choose γ = 1 as an appropriate choice for
points lying on a simple surface in the space X = [0, 1]2. With a Laplacian
kernel we consider a more complex set of functions in our approximation.
This is suggested by the slower decay of the Gram matrix eigenvalues (see
again Figure 1): in this case 7 eigenvalues out of 10 are above 10−2. The non
linearity of the Laplacian kernel provides a higher flexibility, but requires a
higher number of samples to achieve a good approximation. FigureFigure 2
(row III) shows that different choices of τ fail to approximate the support
satisfactorily.

3.2. Lissajous curve support

Now we consider a probability density ρ with a Lissajous curve as a
support Xρ:

Xρ = {(x1(t), x2(t)) | t ∈ [0, 2π]} with

{
x1(t) = 1

2
(cos(t+ π

2
) + 1)

x2(t) = 1
2
(sin(2t) + 1)
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Figure 3: Curve with linear kernel. Left: graph of Fn. Right: level sets of Fn. The plots
show how the estimated surface is not appropriate for the support considered.

In this case it is apparent a linear kernel, without the separating property,
will not estimate accurately a non linear support regardless the parameter
choice, as it can be seen in Figure 3. The Laplacian kernel is a more appro-
priate choice, but in this case parameter estimation also involves the kernel
width γ. In what follows we discuss how different choices of the parame-
ter γ affect the estimated surface. To this purpose we set λ = 10−3 for all
experiments.

For large values of γ the Gram matrix will become a matrix of 1s with
only one eigenvalue greater than 0. With γ = 10 the estimated Fn(x) is
very smooth and close to 1. This can be appreciated in Figure 4 (row I):
small changes on τ produce very different solutions, making the choice of an
appropriate offset very difficult.

For small values of γ the obtained Gram matrix is very sparse. In this
case it is easier to set a reasonable τ , although the obtained estimates are
very tight on the training data and are prone to overfitting. Figure 4 (row II)
shows the estimate obtained for different values of τ and a small γ = 0.05.
The offsets τ are large since most of the estimated support has small values,
close to 0.

The choice of an appropriate value of γ may be guided from the data. We
choose to estimate the median of median values of the distance of a given
point from all the others. The obtained results with the estimated γ = 0.67
are shown again in Figure 4 (row III) This intermediate γ appears to be
appropriate even in the presence of noisy data (Figure 4 (row IV)). Indeed, a
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Figure 4: Support estimation of a curve with a Laplacian kernel. The set Cn for different
values of τ . Row I: large γ. Row II: small γ. Row III: appropriate γ. Row IV: noisy data.
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nonlinear kernel with an appropriate choice of parameters produce estimates
which are not influenced by the presence of moderate noise.

4. Real datasets

In this section we carry out a thorough experimental analysis on a selec-
tion of benchmark datasets of different size (n), dimension of the environment
space (d) and nature. Lacking specific benchmarks for support estimation,
we consider the closely related novelty detection problem, and start from
benchmark multi-class datasets learning one class at a time.

Table 1 summarizes the characteristics of each dataset and highlights the
variety of the different application settings considered: the MNIST 1 and
the USPS 2 datasets, widely used benchmarks on handwritten digits; the
COIL dataset 3, an image library for view-based object recognition; BIO, set
of data from molecular biology (see Ray et al. [19]). Finally, a selection of
different datasets from the UCI benchmark 4.

Table 1: The datasets with their sizes and how they have been used in the experiments:
number of trials and percentage of data assigned to training, validation, and test in each
experimental section.

Dataset class. samples dimension Training Validation Test
# # (pos) (pos - neg) (pos - neg)

MNIST 10 60.000 28× 28 1/2 1/3 1/6
COIL 20 1.440 128× 128 1/3 1/6 1/2
BIO 2 176 120 3/8 1/8 1/2
USPS 10 10.000 16× 16 1/3 1/3 1/3
UCI-Cancer 2 569 32 1/3 1/6 1/2
UCI-Heart 9 303 75 1/3 1/6 1/2
UCI-Telesc. 2 19.020 11 3/8 1/8 1/2
UCI-RedW. 6 1.599 12 1/3 1/6 1/2
UCI-Madel. 2 4.000 500 1/3 1/6 1/2

1http://yann.lecun.com/exdb/mnist/
2http://www.gaussianprocess.org/gpml/data/
3http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php
4http://archive.ics.uci.edu/ml/datasets.html
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We compare the SSE algorithm with well known methods from the liter-
ature, in particular Parzen windows [14], one class Support Vector Machines
[4], and kernel PCA for novelty detection [13], and K Nearest Neighboors.

In all the experiments we adopt the Laplacian kernel given by Eq. (1) as
a non linear separable kernel which we expect to be appropriate for a vari-
ety of problems, similarly to the Gaussian kernel for the supervised learning
domain. As for the filter we adopt spectral cut-off, after we observed ex-
perimentally that different filters produced comparable results on different
datasets.

4.1. Model selection

In this section we consider the problem of choosing appropriate param-
eters in real scenarios and high dimensional data, when the only knowledge
on the problem is the availability of a dataset. It is well known that to
date there are no model selection methods for one-class learning. Thus, lack-
ing a more effective method, in our experiments we use a cross-validation
scheme, assuming we have a (possibly small) set of examples which do not
belong to the support we are estimating, we will use in the validation phase
only. In particular, we perform model selection with an optimization of cross
validation proposed in Rudi et al. [15]. The method, which is inspired by
scale-space theory and statistical learning theory, adaptively learns the error
function in the parameters space by sampling and refining the approximation
only on the regions of stable minima. This approach has been shown to be
more effective and computationally advantageous than classical grid search
over the parameter space.

In accordance to a novelty detection setting, we perform the support
estimation training phase from a set of positive examples, learning one class
at a time. Then, we perform model selection on a validation set of positive
and negative examples to the purpose of choosing the hyper-parameters that
maximize the accuracy. Finally, we perform tests on both positives and
negatives to evaluate the effectiveness of the method to both false positives
and false negatives.

In the specific case of the SSE algorithm with a Laplacian kernel and a
spectral cut-off filter, model selection accounts for the choice of three optimal
parameters: the kernel parameter γ, the regularization parameter λ which
is a threshold on the Gram matrix eigenvalues, and the threshold τ on the
decision rule.
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MNIST-SSE Error Function %

γ

Figure 5: The effect of parameter choice on the error function for the MNIST dataset.
Left: error function obtained by varying λ and γ. Right: ROC curve obtained by varying
τ (see text)
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As we pointed out in Section 3 the different parameters are somewhat
connected. Figure 5 shows the effect of changing the parameters value on
the MNIST dataset. On the top the error function obtained for different λ
and γ is reported: for each (λ, γ) pair the error is obtained with the optimal
τ . The plot highlights the link between the two parameters: one may obtain a
similar result by changing either the λ or the γ value. Also, it can be noticed
that the error function is smooth and the minimum error is associated to a
wide area, showing that the parameter choice is not critical for the method
on this set of data. On the bottom we show the ROC curve computed by
varying the threshold τ , on a fixed (λ = 3.8 ∗ 10−5 , γ = 0.144) pair. The
figure shows the curve corresponding to the optimal pair (that is, the pair
corresponding to the minimum error).

4.2. Method assessment

For each dataset and each algorithm we performed 100 trials. All the
accuracy values concerning each trial are collected and are presented in Fig-
ure 6. Since most of the benchmark datasets we adopted are composed of
multiple classes, given a dataset, we consider a class at a time and estimate
its support from positive examples only. Then we evaluate the membership
of each test datum to the support estimated. In this case we have a false
positive if an example belonging to one of the other classes is associated
to the estimated support, while a false negative if an example of the class
considered falls outside the support. The results we report are the average
of false positives and false negatives for all the different classes. For each
dataset five box-plot are shown, one for each algorithm. Given the dataset
and the algorithm, the box plot represents the statistical properties of the
classification error, calculated on each trial and each class: on each box the
central mark is the median, the edges of each box the 25th and the 75th
percentiles, while outliers are represented as separate crosses.

The SSE algorithm consistently exhibits very good and stable perfor-
mances, and turns out being the best performing algorithm on the MNIST,
COIL, BIO, UCI Telescope, UCI Madelon.

5. Discussion

The paper presented an extensive discussion on the computational and
geometrical properties of a recently proposed algorithm for Support Estima-
tion, the so called Spectral Support Estimation (SSE) algorithm. The main
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Figure 6: Comparative analysis of the SSE method with other support estimation algo-
rithms on various datasets (see text). The box-plots describe the statistics of the errors of
different trials and all the classes of each dataset, whose support is learned one at a time.
In red the average error.
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aim of the paper was to review the estimator providing a geometrical interpre-
tation, and highlighting the properties of the kernel functions to be adopted.
A further aim of the paper was to gain a deeper understanding of its com-
putational aspects, deriving a simple implementation of the algorithm and
discussing parameter selection and computational complexity issues. Simula-
tions allowed us to illustrate the relationship between hyper-parameters and
the effect of parameter choices. Real data were instead adopted to show the
appropriateness of the method as a novelty detection algorithm with respect
to its well known competitors (KNN, KPCA, Parzen windows, 1C-SVM) on
a large selection of problems of different size and nature.
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