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Edges and Corners with Shearlets
Miguel A. Duval-Poo, Francesca Odone, and Ernesto De Vito

Abstract—Shearlets are a relatively new and very effective
multi-scale framework for signal analysis. Contrary to tra-
ditional wavelets, shearlets are capable to efficiently capture
the anisotropic information in multivariate problem classes.
Therefore, shearlets can be seen as the valid choice for multi-
scale analysis and detection of directional sensitive visual features
like edges and corners. In this paper we we start by reviewing
the main properties of shearlets that are important for edge
and corner detection. Then we study algorithms for multi-scale
edge and corner detection based on the shearlet representation.
We provide an extensive experimental assessment on benchmark
datasets which empirically confirms the potential of shearlets
feature detection.

Index Terms—Shearlets, multi-scale image analysis, image
features, edge detection, corner detection.

I. INTRODUCTION

FEATURE detection is an important problem of early
vision. The feature detection process consists in the

extraction of perceptually interesting low level features over
an image, preparing it to further higher level processing tasks
such as image registration, image matching, image classifi-
cation or retrieval, just to name a few. Multi-scale image
representations [1]–[3] provide the framework for detecting
features at coarse and fine scale simultaneously and, to some
extent, to devise scale invariant image descriptors. Of partic-
ular interest for our work are multi-scale methods based on
wavelets, which have been successfully applied to the analysis
and detection of features like edges [4], [5] and corners [6]–
[8]. However, wavelets are known to have a limited capability
in dealing with directional information. In recent years, several
methods like contourlets [9], complex wavelets [10], ridgelets
[11], curvelets [12], and shearlets [13], were introduced to
overcome these limitations. Compared to all these methods,
the shearlet representation stands out since it offers a unique
combination of some highly desirable properties: it has a single
or finite set of generating functions, it provides optimally
sparse representations for a large class of multidimensional
data, it allows the use of compactly supported analyzing
functions both in the space and frequency domain. Last, but
not less important, it has fast algorithmic implementations and
it allows a unified treatment of the continuum and digital
realms. For these reasons, in this work we choose shearlets
as a reference framework for feature detection.

In this paper we first review the shearlet transform focusing
on the problem of edge and corner detection. Then, we
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(DIMA), Università degli Studi di Genova, 16146 Genova, Italy (e-mail:
devito@dima.unige.it).

propose algorithms for multi-scale edge and corner detection
in images. We take inspiration from [14] and [15], but we
adopt a different algorithm to compute the digitalized shearlet
transform, which was first introduced in [16], [17] for seg-
mentation problems. With respect to the latter references we
choose a mother function suitable for signal discontinuities
enhancement [5].

In this work we consider a classical setting, where the
mother shearlet factorizes in the Fourier domain as the product
of a one-dimensional wavelet and a bump functions. The re-
view paper [18] shows the effectiveness of this choice in many
problems in image processing. An alternative construction has
been proposed in [19] where the mother shearlet has compact
support in the space domain. We refer to [20] for a discussion
on the differences between the two approaches and to [21] for
the algorithm issues.

For edge detection we consider two computational pro-
cedures: the shearlet cascade algorithm (SCED) introduced
in [15] and the shearlet multiplicative algorithm (SMED),
which was originally proposed for wavelets [22]. As for corner
detection, we propose a new procedure inspired by [23] and
based on the notion of cornerness.

We experimentally assess the proposed feature detection
algorithms on benchmark data-sets of real images, the Berke-
ley Segmentation Dataset (BSDS300) [24] and the Oxford
evaluation benchmark [25]. The experimental analysis is in
fact a further contribution of the paper, since previous works
applying shearlets to feature detection problems lacked an
extensive experimental analysis on large and complex sets
of real images. The obtained results show the ability of
the shearlet representation to encode low level features that
are relevant for singularity detection and highlight how the
directional informational available in the shearlet coefficients
can be beneficial for the edge/corner detection procedures.

The remainder of this paper is organized as follows: in
Section II we review the shearlet transform in the continuous
and discrete case and provide a computational complexity
analysis. Section III and Section IV respectively propose edge
detection and corner detection algorithms. Section V reports
a detailed experimental analysis of edge detection on the
Berkeley dataset and corner detection following the Oxford
evaluation procedure. Section VI is left to a final discussion.

II. A REVIEW OF THE SHEARLET TRANSFORM

Shearlets are a relatively new class of multidimen-
sional representation systems, capable of efficiently encoding
anisotropic features in multivariate data. They are a natural
extension of wavelets able to overcome wavelet inability of
capturing anisotropic features. In this section we review the
main properties of shearlets, referring the interested reader to
[13], [26]–[29].
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A shearlet is generated by the dilation, shearing and trans-
lation of a function ψ ∈ L2(R2), called the mother shearlet,
in the following way

ψa,s,t(x) = a−3/4ψ(A−1a S−1s (x− t)) (1)

where t ∈ R2 is a translation, Aa is a scaling (or dilation)
matrix and Ss a shearing matrix defined respectively by

Aa =

(
a 0
0
√
a

)
Ss =

(
1 −s
0 1

)
,

with a ∈ R+ and s ∈ R. The anisotropic dilation Aa controls
the scale of the shearlets, by applying a different dilation factor
along the two axes. The shearing matrix Ss, not expansive,
determines the orientation of the shearlets. The normalization
factor a−3/4 ensures that ‖ψa,s,t‖ = ‖ψ‖, where ‖ψ‖ is the
norm in L2(R2).

In the classical setting the mother shearlet ψ is assumed to
factorize in the Fourier domain as

ψ̂(ω1, ω2) = ψ̂1(ω1)ψ̂2(
ω2

ω1
) (2)

where ψ̂ is the Fourier transform of ψ, ψ1 is a one dimensional
wavelet and ψ̂2 is any non-zero square-integrable function.
There are several examples of functions ψ1, ψ2 satisfying these
properties. In Section III we will discuss an appropriate mother
function for edge and corner detection. With the choice of
Equation (2) the shearlet definition in the frequency domain
becomes

ψ̂a,s,t(ω1, ω2) = a3/4ψ̂1(aω1)ψ̂2

(
ω2 − sω1√

aω1

)
e−2πi(ω1,ω2)·t.

(3)
The shearlet transform SH(f) of a signal f ∈ L2(R2) is
defined by

SH(f)(a, s, t) = 〈f, ψa,s,t〉, (4)

where 〈f, ψa,s,t〉 is the scalar product in L2(R2). As a
consequence of the Plancherel formula, Equation (4) can be
rewritten as

SH(f)(a, s, t) = a3/4
∫
R̂2

f̂(ω1, ω2)ψ̂1(aω1)×

ψ̂2

(
ω2 − sω1√

aω1

)
× e2πit·(ω1,ω2)dω1dω2.

A. Shearlets reponse to singular points

The continuous shearlet transform is able to capture the
geometry of edge singularities through its asymptotic decay
at fine scales (a → 0). A group of theoretical results [15],
[18], [27], [29] show that the continuous shearlet transform
precisely describes the geometric information of edges and
other singular points of an image through their asymptotic
behavior at fine scales. These results can be summarized as
follows.

Let an image I be modeled as piecewise smooth function in
Ω = [0, 1]2. That is, its assumed that I is smooth everywhere
on Ω, except for a collection of finitely many piecewise
smooth curves, denoted by Γ, where jump discontinuities may

Fig. 1. Decomposition of the frequency domain into cones.

occur. Then, the asymptotic decay properties of the continuous
shearlet transform SH of I can be defined as follows [30]:
• If a point t /∈ Γ, then |SH(I)(a, s, t)| decays rapidly 1,

as a→ 0, for each s ∈ R.
• If a point t ∈ Γ and Γ is smooth near t, then
|SH(I)(a, s, t)| decays rapidly, as a→ 0, for each s ∈ R
unless s = s0 is the normal orientation to Γ at t. For
s = s0, |SH(I)(a, s0, t)| ∼ a3/4, as a→ 0.

• If a point t is a corner point of Γ and s = s0,
s = s1 are the normal orientations to Γ at t, then
|SH(I)(a, s0, t)|, |SH(I)(a, s1, t)| ∼ a3/4, as a →
0. For all other orientations, the asymptotic decay of
|SH(I)(a, s, t)| is faster (even if not necessarily rapid).

In a recent pre-print [31] a similar behaviour is obtained by
using compactly supported shearlets.
In addition, spike singularities (noise points) produce a very
different behavior than jump discontinuities on the decay of
the continuous shearlet transform. Let us consider a Dirac delta
distribution centered at t0 ∈ R. Then

|SH(δt0)(a, s, t0)| � s−3/4, as a→ 0.

that is, the continuous shearlet transform of δt0 , at t = t0
increases at fine scales. The decay is rapid for t 6= t0. We
stress that the above results hold provided that ψ1 and ψ2

satisfy some additional condition we will discuss in Section
III-A.

B. Cone-adapted Shearlets

A major limitation of the shearlets defined in the previous
section is the directional bias of shearlet elements associated
with large shearing parameters. A common way to deal with
this problem is to partition the Fourier domain into four
cones, and separate the low-frequency region by cutting out
a square centered around the origin. This yields a partition
of the frequency plane as illustrated in Fig. 1. This concept
is commonly known as cone-adapted shearlets and was in-
troduced in [13]. It can be seen that within each cone, the
shearing parameter s is only allowed to vary over a finite
range, therefore, this produces elements whose orientations are
distributed more uniformly. This fact has certain advantages
for numerical implementation.

1Here rapid decay means that for any N ∈ N, there is a CN > 0 such
that |SH(I)(a, s, t)| ≤ CNa

N , as a→ 0.
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Formally, the two conic regions are defined as

Ch = {(ω1, ω2) ∈ R2 : |ω2/ω1| ≤ 1, |ω1| > 1}
Cv = {(ω1, ω2) ∈ R2 : |ω1/ω2| ≤ 1, |ω2| > 1}

and the low-frequency part as

R = {(ω1, ω2) ∈ R2 : |ω1|, |ω2| ≤ 1}.

Let, for each set Cx, x ∈ {h, v}, be defined a cut-off function
χCh(ω) which is equal to 1 for ω ∈ Cx and 0 for ω /∈ Cx.
Then, the shearlet ψ can be suited for the horizontal cone as

ψ̂h(ω1, ω2) = ψ̂1(ω1)ψ̂2

(
ω2

ω1

)
χCh .

Analogously the shearlet for the vertical cone can be defined,
where the roles of ω1 and ω2 are interchanged, i.e.

ψ̂v(ω1, ω2) = ψ̂1(ω2)ψ̂2

(
ω1

ω2

)
χCv .

The remaining part R can be handled by a scaling function
φ̂(ω1, ω2).

C. Digital Shearlets

Digital shearlet systems are defined by sampling continuous
shearlet systems on a discrete subset of the space of parameters
R+×R3 and by sampling the signal on a grid. It is reasonable
to expect that the resulting discrete systems will inherit some
basic geometric properties of the corresponding continuous
systems and, thus, their ability to localize spatially distributed
discontinuities. In the literature there are many different dis-
cretization schemes, see [21] and reference therein.

In this paper we adopt the Fast Finite Shearlet Transform
(FFST) [16] which performs the entire shearlet construction in
the Fourier domain. This implementation is computationally
more efficient than analysis performed in the space domain,
unless ad hoc optimizations are applied, and allows us to
obtain algorithms that follow exactly the theoretical conceptual
path: this is a benefit in terms of elegance and clarity of the
implementation. In this scheme, the signal is discretized on a
square on size N , which is independent of the dilation and
shearing parameter, whereas the scaling, shear and translation
parameters are discretized as

aj = 2−j , j = 0, . . . , j0 − 1,

sj,k = k2−j/2, −b2j/2c ≤ k ≤ b2j/2c,

tm =
(m1

N
,
m2

N

)
, m ∈ I

where j0 is the number of considered scales and I =
{(m1,m2) : m1,m2 = 0, . . . , N − 1}. With respect to the
original implementation we use a dyadic scale 2−j instead of
4−j to reduce the difference among two consecutive scales.
With these notations the shearlet system becomes

ψx
j,k,m(x) = ψx

aj ,sj,k,tm
(x)

where x = h or x = v. In the Fourier domain it becomes

ψ̂h
j,k,m(ω1, ω2) = 2

3j
4 ψ̂1(2−jω1)ψ̂2

(
2

j
2
ω2

ω1
− k
)
×

× e−2πi
ω1m1+ω2m2

N χCh(ω1, ω2) (5)

where

(ω1, ω2) ∈ {(ω1, ω2) : ω1, ω2 = −bN
2
c, . . . , dN

2
e − 1}.

If x = v we have a similar formula by interchanging ω1

and ω2. Note that, if the scale j is fixed we can remove the
normalization factor 2

3j
4 in (5).

Finally, for the low frequency domain, we set

φm(x) = φ(x− tm),

φ̂m(ω) = φ̂m(ω1, ω2) e−2πi
ω1m1+ω2m2

N .

The discrete shearlet transform of an digital image I is now
defined as

SH(I)(j, k,m) =


〈I, φm〉
〈I, ψhj,k,m〉
〈I, ψvj,k,m〉

where j = 0, . . . , j0 − 1, |k| ≤ b2j/2c, m ∈ I. Based
on the Plancherel formula 〈f, g〉 = 1

MN 〈f̂ , ĝ〉, the discrete
shearlet transform can be efficiently computed by applying
the 2D Fast Fourier Transform (fft) and its inverse (ifft).
Thus, the discrete shearlet transform can be rewritten as
SH(I)(j, k,m) =

ifft(φ̂(ω1, ω2)fft(I))(m)

ifft(ψ̂1(2−jω1)ψ̂2(2j/2 ω2

ω1
− k)fft(I))(m) .

ifft(ψ̂1(2−jω2)ψ̂2(2j/2 ω1

ω2
− k)fft(I))(m)

(6)

D. Computational Complexity

For an image I of size N × N , the computational com-
plexity of the discrete shearlet transform defined in (6) is
O(SN2 + SN2 logN), where S is the number of employed
shearlets, i.e. S = |Ψ|,Ψ = {ψ̂j,k : j = 0, . . . , j0 −
1,−b2j/2c ≤ k ≤ b2j/2c}. Notice that S is exponential on the
number of considered scales j0. Taking into consideration that
j0 � N and that in practice, even for high resolution images,
j0 < 8, we can assume S as a small constant. Therefore
we conclude the computational complexity of the discrete
shearlet transform is O(N2 logN) which is the computational
complexity of the 2D fast Fourier transform.

Up to this point, the scalar product 〈I, ψj,k,m〉 is solved
in the Fourier domain by using the Plancherel formula and
the 2D fast Fourier transform. A variant of this approach
consists in solving the scalar product in the time domain by
using 2D convolution, i.e. I ∗ ifft(ψ̂j,k,m). In this case the
computational complexity will be O(SN2W 2), where W×W
is the size of the shearlets. Let consider, like in the Fourier
implementation, that S is a constant and that W � N . With
this assumptions, the computational complexity can be reduced
to O(N2). Notice that the number of considered scales j0 is
proportional to the size of the shearlets W , therefore, in order
to maintain a quadratic computational complexity, we need to
consider only small scales. In this case only, working in the
time domain is computationally more advantageous.
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Fig. 2. Different choices for ψ̂1. (a) Meyer wavelet, (b) Mallat wavelet

III. EDGE DETECTION WITH SHEARLETS

Edges are meaningful image features associated with points
where the 2D signal undergoes a sharp variation. The literature
on edge detection is vast and certainly out of the scope of this
paper. Traditional edge detectors are based on image deriva-
tives. A very classical algorithm is the Canny edge detector
[32], which is based on three criteria for an optimal edge
detection: good detection, good localization, and low spurious
response. It shows that the optimal detector for an isolated
step edge should be the first derivative of a Gaussian. In the
Canny approach, the standard deviation σ of the Gaussian
can be seen as a scale parameter which acts as a tradeoff
between good localization and noise suppression. Later, Mallat
and his collaborators [4], [5] generalized the Canny approach
using wavelets, thus providing a multi-scale framework for
edge detection in signals. In more recent years, along the rise
of directional multi-scale representations, new edge detection
methods based of curvelets [33], [34] and contourlets [35],
have been proposed. An edge detection algorithm based on
shearlets has been presented in [15], where the authors provide
theoretical and numerical justifications of a cascade algorithm
for edge detection.

A. Appropriate Shearlets for Edge Detection

We now discuss a possible way to exploit the shearlet
transform for the estimation of edges strength and orientation.
We first comment on the type of shearlets which are more
appropriate for the task.

A classical choice for the function ψ1 is the Meyer wavelet
(see, for instance, [16], [36]), which is band limited and C∞

in the frequency domain, forcing rapid decay in the spatial
domain. This choice is instead not optimal for edge detection
since the Meyer wavelet is an even function (see Fig 2, (a))
and thus its shearlet transforms suffer from large side-lobes
around prominent edges, which interfere with the detection of
the edge location, as it can be seen in the image of Fig. 3 (b).

To overcome this effect, the authors of [15] propose a
discrete shearlet transform implementation that uses finite
impulse response filters corresponding to the quadratic spline
wavelet defined in [5]. In the latter reference it is shown that
the determination of the local extrema of the wavelet transform
is equivalent to Canny edge detection, provided the wavelet is

(a) (b) (c)

Fig. 3. Shearlet edge points. (a) Original image, (b) ψ̂1 chosen as the Meyer
wavelet, (c) ψ̂1 chosen as the Mallat wavelet.

the first derivative of a Gaussian. Furthermore, the authors
in [5] introduce the following family of one dimensional
wavelets, namely Mallat wavelets,

ψ̂1(ω) = iω

(
sin(ω/4)

ω/4

)2n+2

, (7)

which share the same properties of the first derivative of the
Gaussian.

In this work we obtain a shearlet suitable for edge detec-
tion, simply by replacing the Meyer wavelet with the Mallat
wavelet. The effect of this change is shown in Fig. 3 (c).
The Mallat wavelet is not compactly supported in the Fourier
domain, however its essential support is bounded, as shown
in Fig. 2 (b). As for ψ2, instead, any smooth function with
compact support in the frequency domain can be considered.
In our case we used the same bump function as in [16], [36].
With this choice for ψ1 and ψ2, the corresponding shearlets are
well localized both in frequency and time domain, see Fig. 4.

B. Multi-scale Shearlet Edge Detection

Let us consider an image I and address the problem of
estimating the energy and orientation of candidate edges. Ac-
cording to the properties of the continuous shearlet transform
summarized in Section II, edge points can be identified as
those points m ∈ I which, at scale j, the function Ej(m) has
large values, with

Ej(m)2 =
∑
k

(SH(I)(j, k,m))2. (8)

SH(I)(j, k,m) denotes the discrete shearlet transform of I,
as defined in Eq. (6). Fig. 5 shows the detected shearlet
edge points on an example image, for different scales up to
j0 = 4. It can be seen that a coarse scales (j = 0, 1) the
amount of spurious edges is lower, to the price of localization.
Conversely, at fine scales (j = 2, 3) edge localization is very
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Fig. 4. Shearlets in the space (top) and frequency domain (bottom) - ψ1 is the Mallat wavelet. Four different orientations and a fine scale (j = 1).

accurate, while noise increases.

Edge orientation estimation. The edge direction at a point
m at scale j is easily obtained by finding the index k that
maximizes SH(I)(j, k,m),

θj(m) = arg max
k
|SH(I)(j, k,m)|.

Fig. 6 shows an example of the edge direction estimation
using the shearlet transform at different scales j. The
estimated directions are color coded, i.e. each color represents
a specific direction summarized in the colorbar at the right
of the figure. As we can observe, the shearlet transform
accurately estimates the edge orientation. In addition, it can
be noticed how accuracy increases at fine scales (j → 3)
due to the fact that at fine scales more shears k have to be
considered, −b2j/2c ≤ k ≤ b2j/2c.

SCED - cascade edge energy estimation. A way to exploit
multi-scale information for estimating the edge energy is to
reason on the behavior of shearlet coefficients at different
scales of a given point of the image.

Following the discussion of Section II (see also [4], [5]),
we expect that

|SH(I)(j, k, m̄)| ∼ C2−βj

where, if β ≥ 0 we may classify m̄ as an edge point, otherwise
(i.e. |SH(I)| increases at finer scales) m̄ may be classified as

Algorithm 1 Shearlet cascade edge detection (SCED) algo-
rithm. Input I: input image, j0: number of considered scales,
t: threshold. Output E : edge image.

1: procedure SCED(I, j0)
2: SH = dst(I);
3: for all m ∈ I do
4: E(m) =

√∑
k(SH(j0 − 1, k,m))2;

5: θ(m) = arg maxk |SH(j0 − 1, k,m)|;
6: end for
7: for j = j0 − 2, . . . , 0 do
8: for all m ∈ I do
9: ej(m) =

√∑
k(SH(j, k,m))2;

10: E(m) =

{
E(m) if E(m) ≤ ej(m)

ej(m) if E(m) > ej(m)
11: end for
12: end for
13: nonmaxsup(E , θ);
14: thresholding(E , t);
15: return E ;
16: end procedure

noise. Based on this result, Yi et al. [15], propose a cascade
algorithm that reinforces true edges and suppresses false ones.
Here we propose a variant of this algorithm, summarized in
Alg. 1, where dst is the discrete shearlet transform defined in
(6), nonmaxsup is a non-maxima suppression function and
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(a) Original image (b) j = 0 (c) j = 1 (d) j = 2 (e) j = 3

Fig. 5. Detected shearlet edge points at different scales j.
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Fig. 6. Estimation of the edge direction using the shearlet transform at
different scales j.

thresholding a function that applies a threshold to decide
whether an image point is an edge or not.

We start by estimating the shearlet transform energy at the
finest scale; then we correct it in all points which are likely to
be noise, by applying the energy computed at coarser scales
(whose coefficients are smaller in these cases). This simple
procedure allows us to obtain neat results (see Fig. 7, (b)).

SMED - edge strength estimation by multiplication. An-
other valid approach for a multi-scale edge detector is multi-
plying corresponding shearlet coefficients across scales. This
idea takes inspiration by Zhang et al. [22] which proposed a
wavelet based edge detection scheme by scale multiplication.
This idea can be easily adopted to the shearlet transform. The

scale product function P is defined as the correlation of edge
points across scales

P(m) =

j0−1∏
j=0

Ej(m), (9)

where Ej(m) are the edge candidates defined in (8).
Fig. 7 , in (b) and (d), shows the result of the cascade

algorithm (SCED) and the scale multiplication algorithm
(SMED) respectively. As expected, the two obtained results
appear to be quite different: SCED captures edge information
provided by the different scales, to the price of retaining
some noise. Instead MCED returns points whose coefficients
are meaningful at all the scales considered. These points
correspond to very prominent edges.

The figure also reports ,in (a) and (c), the corresponding
results obtained by substituting the shearlet transform with
the wavelet transform described in [5]. These two algorithms
are referred to as WCED and WMED respectively. As we
can observe, the results of SCED and SMED are visually
more pleasant that the one obtained by WCED and WMED
respectively, as previously seen in [15]. In particular the edge
chains are more coherent and clearly marked, and this clearly
indicates the benefit of shearlets sensitivity to orientation
information.

IV. CORNER DETECTION WITH SHEARLETS

We now consider another class of image features, usually
referred to as corners, which are widely used in computer vi-
sion primarily for their effectiveness in matching and tracking
problems [37]. A corner can be defined as the intersection of
two edges, or, as a point for which there are at least two dom-
inant and different edge directions in a local neighbourhood
of the point.

There are several approaches for detecting corners in
images. Since the pioneering work of Harris and Stephens
[38], and later of Shi and Tomasi [37], the structure tensor of
image gradients, also known as the autocorrelation matrix,
has become popular for corner detection. Wavelets have been
applied to corner detection [6]–[8], but the corresponding
algorithm is affected by the limited ability of wavelets
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(a) WCED (b) SCED

(c) WMED (d) SMED

Fig. 7. Comparison of the cascade and scale multiplication edge detection
approaches with both discrete wavelet transform and discrete shearlets trans-
forms.

to encode directional informations. In order to overcome
this limitation, orientation sensitive wavelets, such as the
Log-Gabor wavelets, can be applied [23]. Here we present
an alternative way for addressing the problem effectively by
selecting a more appropriate orientation selective transform.
The first intuition on the applicability of shearlet transform
to corner detection has been provided in [15] based on the
theoretical results of [27].

SCD - shearlet corner detection. On previous sections we
have discussed the ability of shearlets for detecting the direc-
tional information of edges at different scales. Therefore, its
seems almost natural their use for detecting corner points. Fig.
8 shows a comparison of the orientation patterns, produced
by the shearlet transform, between an edge point (square) and
a corner point (circle) on a natural image. Let first analyze
the orientation patterns at a fixed scale j = 2 (red). As we
can observe, for the edge point a strong shearlet response is
obtained on one direction only, while for the corner point it
can be observed strong shearlet responses at two different,
almost perpendicular, orientations. If we perform the analysis
across scales, it can be seen how on the edge point the
strongest shearlet response is maintained on one direction only

(a) Original image
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Fig. 8. Shearlet orientation patterns for an edge point and a corner point of
a natural image.

across scales with the exception of the finest scale where
two high responses are obtained on two close orientations.
However, at the corner point, the two orientations with the
strongest shearlet response slightly vary across scales. This is
an expected behavior since, depending of the scale at which
the analysis is performed, a corner point can have different
main orientations. This example shows how, by analyzing
the shearlet coefficients across shearings (orientations), corner
points can be detected at different scales.

A possible way of estimating if a point is a good corner at
a fixed scale is by performing a weighted sum of its shearlet
coefficients across shears, where each weight is a value that
represents how perpendicular is the orientation of the shear
with the orientation of the shear with the maximum shearlet
response for that point. In this way we favor points with
large coefficients in at least to directions, differing about 90
degrees (the ”ideal” corner). Formally, let CM be a cornerness
measure estimated for a point m ∈ I and for a fixed scale j
in the following way

CMj(m) =
∑

u∈W (m)

∑
k

|SH(j, k, u)| sin(|θk − θkmax |)

where SH(j, k, u) represents the discrete shearlet transform
coefficient for a point u in a neighborhood of m, at scale j
and shearing k, θk is the angle associated with the shearing
k, kmax = arg maxk |SH(j, k,m)| and W (m) is a window
centered at point m. Figure 9 shows the cornerness measure
computed at different scales j. At fine scales the maxima are
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very few and very local, while at coarser scales neighbouring
points are also detected. For this reason a non-maxima
suppression is needed [39]. Notice how edge points are
seldom associated with high values, and it only happens at
the coarsest scale.

SMCD - shearlet multi-scale corner detection. By aggregat-
ing the information of different scales in the following way

CM(m) =
∑
j

CMj(m)

we obtain a multi-scale version of the algorithm, where
corners at different resolutions are detected simultaneously
and detected corner points that persist across scales are
reinforced. This approach is summarized in Alg. 2, where
dst is the discrete shearlet transform defined in (6) and
nonmaxsup is a non-maxima suppression function [39].
Notice that, unlike the non-maxima suppression defined for
edge detection, this technique uses a local window sliding
through all the pixels of the image. The central pixel value
of the window is kept if is the local maximum within the
window, otherwise is set to zero.

Automatic scale selection. Taking the advantage of the multi-
scale representation produced by the shearlets, it is also possi-
ble to perform an automatic scale selection step. Therefore, the
most appropriate scale j̄ of a corner point m ∈ C is selected
as

j̄ = arg max
j

Kj

∑
k

|SH(j, k,m)|

where Kj is a normalization factor that depends on the scale
j. Fig. 10 shows the result of the shearlet multi-scale corner
detection with automatic scale selection. As we can observe,
the corners detected at fine scales (j = 2, 3) belong to high
resolution patterns like the grass, while corners detected at
coarse scales (j = 0, 1) belong to coarse scale objects like the
buildings in the background and objects out of focus.

Algorithm 2 Shearlet multi-scale corner detection (SMCD)
algorithm. Input I: input image, j0: number of considered
scales, t: threshold. Output C: set of detected corner points.

1: procedure SMCD(I, j0, t)
2: C = {};
3: SH = dst(I);
4: for all m ∈ I do
5: CM(m) =∑

j

∑
u∈W (m)

∑
k |SH(j, k, u)| sin(|θk − θkmax

|);
6: end for
7: nonmaxsup(CM);
8: for all m ∈ I do
9: if CM(m) > t then

10: C = C ∪m;
11: end if
12: end for
13: return C;
14: end procedure

TABLE I
EDGE ENHANCEMENT METHODS ON THE BSDS300 DATASET. RESULTS

MARKED WITH (*) HAVE BEEN EXTRACTED FROM FIG 1. IN [41]

F-measure (ODT)

Prewitt [42] (*) 0.48
Sobel [43] (*) 0.48
Roberts [44] (*) 0.47
Hildreth, Marr [45] (*) 0.50
Canny [32] (*) 0.58
Perona, Malik [46] (*) 0.56
SEW (j = 0) [5] 0.55
SED (j = 0) 0.59

V. EXPERIMENTAL ANALYSIS

In this section we present the experimental results of
the discussed shearlet approaches for both edge and corner
detection.

Edge detection. For the evaluation of the shearlet edge detec-
tion approaches we adopt the Berkeley Segmentation Dataset
(BSDS300) [24], and we adopt the experimental protocol
proposed in [40]. BSDS300 is a widely used benchmark for
contour detection. This dataset consists of 200 very challeng-
ing natural images for training and 100 for testing. In addition,
each image is associated with human-marked boundaries used
as ground truth (see Fig. 11). The precision-recall curve is a
parametric curve that captures the trade off between accuracy
and noise as the detector threshold on the edge intensity varies.
We remind precision is the fraction of detections that are true
positives rather than false positives, that is P = TP

(TP+FP ) ,
while recall is the fraction of true positives that are detected
rather than missed, that is R = TP

(TP+FN) . The global F-
measure, or harmonic mean of precision and recall at the
optimal detector threshold, provides a summary score. The
F-measure is defined as F = 2PR

(P+R) . In our experiments two
different quantities are reported: the best F-measure on the
dataset for a fixed threshold (Optimal Dataset Threshold, ODT
- referred by the acronym ODS in [41]), and the aggregate F-
measure on the dataset for the best threshold in each image
(Optimal Image Threshold - OIT, referred as OIS in [41]).
First we report a comparative analysis with classical edge
enhancement algorithms. In this analysis we consider a fixed
scale scenario (j = 0 in our case), in order to produce a
fair comparison. The results of the analysis are summarized
in Table I: the shearlet-based algorithm compares favorably
with the other methods, and among the others the Canny edge
detector appears to be the most adequate choice.

Fig. 12 focuses on multi-scale representations: in (a) it
shows the precision-recall curve for the detected edges on the
BSDS300 dataset with the discrete shearlet transform (SED)
and the discrete wavelet transform (WED) at different fixed
scales up to j0 = 4. As it can be observed, the results obtained
with the discrete shearlet transform are generally better. In
addition, we can see the precision increases while at the same
time the recall decreases as we move from fine scales to coarse
scales (j = 3, . . . , 0). This is due to the fact that at coarse
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(a) Original image (b) j = 0 (c) j = 1 (d) j = 2

0

0.25

0.5

0.75

1

(e) j = 3

Fig. 9. Shearlet cornerness measure CM at different scales j.

(a) Original image (b) Detected corners

Fig. 10. Shearlet multi-scale corner detection (SMCD) with automatic scale
selection. j = 0 (Blue); j = 1 (Green); j = 2 (Red); j = 3 (Magenta).

Fig. 11. Example images of the BSDS300. Top to Bottom: Image and ground-
truth boundaries hand-drawn by different human subjects.

scales more noise is suppressed, increasing the precision and
at the same time true edges can also be suppressed, therefore
decreasing the recall. In theory, we should observe a similar
behavior on wavelets, however at coarse scales, the edges have
a noisier intensity signal. That is why with high thresholds the
edges will present more discontinuities, therefore obtaining a
significant drop in the precision. In Fig. 12 (b) and (c) we
compare the results of the cascade algorithm (SCED) and the
scale multiplication (SMED) on the BSDS300 with the output
of the same methods but replacing the discrete shearlet trans-
form with the discrete wavelet transform, denoted by WCED
and WMED, respectively. We use the fast wavelet algorithm

defined in Appendix B of [5] with the filters corresponding
to the quadratic spline wavelet, see Table 1 of the above
reference. As we can observe in both plots, SCED and SMED
performs better than WCED and WMED respectively, mostly
by having an increment in the precision. We remark that the
main advantage of shearlets against wavelets is that we obtain
an effective estimate of edge orientations.

This availability is only marginally reflected in the exdge
detection algorithm, where it is used to improve the quality of
the non-maxima suppression phase. Therefore it is reasonable
to see a limited numerical improvement in the overall detection
performances, with the positive side effect of obtaining edge
maps which are cleaner and better suited for subsequent
edge linking phases. Also, the obtained edge orientation map,
obtained naturally with shearlets, is an important additional
information to be used in higher level processing steps.

Corner detection. This evaluation is based on Mikolajczyk’s
software framework and image sequences2. Each one of the
image sequences used in the evaluation contain 6 images of
natural textured scenes with increasing geometric and photo-
metric transformations. The images in a sequence are related
by a homography which is provided with the image data. Fig.
13 shows the image sequences we selected for our evaluation
with their respective transformation. We discarded those that
are not applicable in our scenario that does not consider large
zooming and rotations (normally addressed by appropriate
descriptors). For the evaluation metrics we employed the
number of correspondences and the repeatability score [25].
The number of correspondences |CR1i|, is the cardinality
of the set containing all the corner points correspondences
between the image I1 and the transformed image Ii. To
calculate it, the regions representing the corner points are
mapped from one image to the other using the homography.
Then is checked how many of them overlap with a region
from the other image by a given minimal percentage. Only
corner points are taken into account that are visible in both
images. On the other hand, the repeatability score RSi for an
image Ii is the ratio of the number of correspondences and the
minimum number of corners detected in one of the images.
Formally, it is defined by

RSi =
|CR1i|

min (|C1|, |Ci|)
where Ci is the set of all detected corners in image Ii.

The proposed shearlet corner detection approaches, SCD for
a fixed scale j and SMCD without automatic scale selection,

2http://www.robots.ox.ac.uk/∼vgg/research/affine/
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Fig. 12. Edge detection evaluation on the BSDS300 dataset. The F-measurements in the legend provide a summary score when an optimal threshold is
selected for the entire data set (ODT) or per image (OIT). Additionally, the light gray curves represent the isolevel lines of the function F (P,R).

have been compared with the classical corner detectors Harris
[38] and Shi-Tomasi [37], the two methods LGWTOI and
LGWTSMM proposed in [23] based on Log-Gabor wavelets,
and the more recent FAST [47]. Automatic scale selection has
not been included in the experiments for a fair comparison
with the other methods. For all the methods, a threshold is
established as the 10% of the cornerness measure maximum
value. Detected corner points with a cornerness measure below
that threshold are automatically discarded. If more than 500
detected corner points remains, only the 500 points with the
maximum cornerness measure are selected. The results are
reported in Fig. 14.

As we can observe in Fig. 14 (a), all corner detection meth-
ods maintain a similar repeatability score across this viewpoint
angle increment, while in the number of correspondences,
FAST slightly outperforms the rest. In Fig. 14 (b) in which
also occurs a viewpoint change across images, the SMCD
and SCD at scale j = 2 obtain a slightly better repeatability
score and number of correspondences with respect of the rest
of the corner detectors. For the image blur transformation,
Fig. 14 (c) shows that Harris and LGWTSMM obtain a
very high repeatability score but with the lowest number of
correspondences. Shi-Tomasi and SCD at the coarsest scale
j = 0 maintain also a high repeatability score across increasing
blur but SCD at j = 0 outperforms Shi-Tomasi and the rest
of corner detectors in the number on correspondences. In
addition, the SMCD and SCD at scale j = 1 obtained a high
number of correspondences with an acceptable repeatability
score. Continuing in the image blur transformation, now in the
Trees image sequence, Fig. 14 (d) shows how SMCD and SCD
at coarse scales j = 0, 1 outperforms the rest of the detector
in both repeatability score and number on correspondences.
Finally, for the illumination change transformation, in Fig.
14 (e) can be seen how LGWTOI, FAST, SMCD and SCD
at fine scales j = 2, 3 obtained the highest number of
correspondences. While SMCD and SCD at coarse scales
j = 0, 1 obtained the best repeatability scores.

In summary we can state that the presented shearlet ap-
proach is effective in detecting matchable corners across
different image transformations and it is particularly beneficial
in the case of blur and illumination changes. As for time per-
formances, our Matlab implementation performs comparably

to similar approaches who do not require a training stage [37],
[38] (we refer to the performances reported in [47], Table
IV): at a single scale the whole algorithm has an average of
14.2MPixel/s, while it performs on average 16.8MPixels/s
with pre-computed shearlets 3. We conclude by observing that
a comparative analysis with optimized libraries such as [47]
would not be fair at this point, since our code has not been
optimized yet and our choice of the programming language is
not appropriate for this type of evaluations.

VI. CONCLUSIONS

In this paper we addressed the problem of extracting multi-
scale image features, edges and corners in particular, by
exploiting the shearlets framework. Shearlets are capable of
capturing anisotropic information in multivariate functions and
are thus particularly appropriate for the detection of directional
sensitive features.

The analysis of the features across the shearlet scales
allowed us to obtain meaningful features and suppress noise
at the same time.

In this work we adopted an algorithm for computing the
shearlet transform in the Fourier domain, the Fast Finite
Shearlet Transform (FFST) [16], and chose a mother function
specifically proposed in [5] for enhancing signal discontinu-
ities. The choice allowed us to obtain computational efficiency
which can be easily achieved in the frequencies domain, and
a tidy implementation which follows exactly the theoretical
conceptual path. We observe how interesting alternatives will
be worth investigating in future works. In particular, compactly
supported shearlets in the space domain [19] have been
recently shown to have nice properties for edge detection [31]
since they could allow us to capture effectively the spatial
locality of image features.

We proposed two algorithms for multi-scale edge and
corner detection, which fully exploit the expressive power
of shearlets, in the enhancement of discontinuities associated
with a given orientation and a given scale. The effectiveness
of our contributions was substantiated by a thorough exper-
imental analysis on benchmark datasets, where we showed

3Our experiments have been carried out on a 2GHz Intel i7, which is slightly
superior to the processor reported in [47].
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(a) Graffiti (viewpoint change)

(b) Wall (viewpoint change)

(c) Bikes (image blur)

(d) Trees (image blur)

(e) Leuven (light change)

Fig. 13. Image sequences with different geometric and photometric transfor-
mations used in the corner detection evaluation.

the superiority of shearlets over wavelets for edge detection,
both in quantitative and qualitative evaluations. As for corner
detection, we compared our results with state of the art
methods and illustrated the appropriateness of our algorithm
in particular in the case of blur and illumination changes.

Future works will be devoted at extending the applicability
of the general framework to the detection of other classes of
image features. Furthermore, we aim to investigate the relation
between our shearlet based scale selection and the other
classical methods, as for example the scale-space approach,
see [1] and references therein. For one-dimensional signal it
is known that wavelet representation (with the derivative of the
Gaussian as a mother wavelet) is equivalent to the scale-space
analysis, see [48] for some further information. Our intuition is
that a similar relation could also hold with shearlet. However,

the parabolic scaling makes the analysis more difficult and a
delicate issue is the choice of the normalization of the shearlet
transform to ensure the fact that there is a unique maximum
across the scale.
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2011“Varietà reali e complesse: geometria, topologia e analisi
armonica”, and he is a member of the Gruppo Nazionale per
l’Analisi Matematica, la Probabilità e le loro Applicazioni
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